
Reuven Gordon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3106676/publications.pdf Version: 2024-02-01

RELIVEN CORDON

#	Article	IF	CITATIONS
1	Large Plasmonic Resonance Shifts from Metal Loss in Slits. Plasmonics, 2022, 17, 315-320.	3.4	Ο
2	Accessible high-performance double nanohole tweezers. Optics Express, 2022, 30, 3760.	3.4	5
3	Future Prospects for Biomolecular Trapping with Nanostructured Metals. ACS Photonics, 2022, 9, 1127-1135.	6.6	14
4	Coupling Perovskite Quantum Dot Pairs in Solution using a Nanoplasmonic Assembly. Nano Letters, 2022, 22, 5287-5293.	9.1	1
5	A New Angle on Second Harmonic Generation from a Small Hole in a Metal Film. Plasmonics, 2021, 16, 435-440.	3.4	Ο
6	Plasmonic linewidth narrowing by encapsulation in a dispersive absorbing material. Physical Review Research, 2021, 3, .	3.6	5
7	Isolating and enhancing single-photon emitters for 1550Ânm quantum light sources using double nanohole optical tweezers. Journal of Chemical Physics, 2021, 154, 184204.	3.0	14
8	Plasmonics–mine the gap: opinion. Optical Materials Express, 2021, 11, 2192.	3.0	6
9	Single Nanoflake Hexagonal Boron Nitride Harmonic Generation with Ultralow Pump Power. ACS Photonics, 2021, 8, 1922-1926.	6.6	7
10	Upconversion nanocrystal emission rate enhancement using double nanoholes. , 2021, , .		0
11	Maximum power transfer in a real metal slit: an analytic approach. Optics Express, 2021, 29, 38129.	3.4	2
12	Individual Nanoflakes of Two Dimensional Materials Harmonic Generation with Ultralow Pump Power. , 2021, , .		0
13	Hexagonal boron nitride second harmonic generation using gold nanorods with continuous laser source. , 2021, , .		Ο
14	The impact of loss on plasmonic resonances in a slit in a real metal. , 2021, , .		0
15	Extraordinary Acoustic Raman Spectroscopy of PR65. , 2021, , .		Ο
16	Enhancing and Isolating Lanthanide-Doped Nanocrystals Using Double Nanohole Optical Tweezers for Quantum Light Sources at 1550 nm. , 2021, , .		0
17	Room-temperature mid-infrared detectors. Science, 2021, 374, 1201-1202.	12.6	1
18	lsolating Nanocrystals with an Individual Erbium Emitter: A Route to a Stable Single-Photon Source at 1550 nm Wavelength. Nano Letters, 2020, 20, 1018-1022.	9.1	26

#	Article	IF	CITATIONS
19	Metal Nanoapertures and Single Emitters. Advanced Optical Materials, 2020, 8, 2001110.	7.3	7
20	Optical Trapping, Sizing, and Probing Acoustic Modes of a Small Virus. Applied Sciences (Switzerland), 2020, 10, 394.	2.5	27
21	Bright upconverted emission from light-induced inelastic tunneling. Optics Express, 2020, 28, 16497.	3.4	3
22	[INVITED] Biosensing with nanoaperture optical tweezers. Optics and Laser Technology, 2019, 109, 328-335.	4.6	49
23	Generating and Detecting High-Frequency Liquid-Based Sound Resonances with Nanoplasmonics. Nano Letters, 2019, 19, 7050-7053.	9.1	5
24	Colloidal lithography double-nanohole optical trapping of nanoparticles and proteins. Optics Express, 2019, 27, 16184.	3.4	28
25	Molecular Optomechanics in the Anharmonic Cavity-QED Regime Using Hybrid Metal–Dielectric Cavity Modes. ACS Photonics, 2019, 6, 1400-1408.	6.6	40
26	Nanostructured metals for light-based technologies. Nanotechnology, 2019, 30, 212001.	2.6	18
27	Cascaded Plasmon-Enhanced Emission from a Single Upconverting Nanocrystal. ACS Photonics, 2019, 6, 1125-1131.	6.6	26
28	Absorption leads to narrower plasmonic resonances. Journal of the Optical Society of America B: Optical Physics, 2019, 36, F117.	2.1	9
29	Improving sensitivity of existing surface plasmon resonance systems with grating-coupled short-range surface plasmons. Journal of the Optical Society of America B: Optical Physics, 2019, 36, F144.	2.1	7
30	Beaming light through a bow-tie nanoaperture at the tip of a single-mode optical fiber. Optics Express, 2019, 27, 14112.	3.4	7
31	Optics with complex materials and (sub)nanostructures: introduction. Journal of the Optical Society of America B: Optical Physics, 2019, 36, OCM1.	2.1	Ο
32	Colloidal lithography for trapping 10 nm enzymes. , 2019, , .		0
33	Dewetting during Terahertz Vibrations of Nanoparticles. Nano Letters, 2018, 18, 773-777.	9.1	10
34	In Situ Accurate Analysis of Colloidal Nanoparticles via Four Wave Mixing. MRS Advances, 2018, 3, 707-709.	0.9	0
35	Crude Oil Asphaltenes Studied by Terahertz Spectroscopy. ACS Omega, 2018, 3, 3406-3412.	3.5	10
36	An Analytic Approach to Nanofocusing with Pyramidal Horn Antennas. Plasmonics, 2018, 13, 1417-1423.	3.4	1

#	Article	IF	CITATIONS
37	Trapping Individual Upconverters Using Rectangle Nanoapertures. , 2018, , .		Ο
38	Lorentz Based Metamaterials for Nonlinear Generation. , 2018, , .		0
39	Characterizing Mutant Protein Activators Using Single Molecule Optical Trapping. , 2018, , .		1
40	Subnanometer Gaps for Enhanced Raman Substrates. , 2018, , .		1
41	Plasmon Enhanced Dual Band Upconverters. , 2018, , .		Ο
42	Potential High-Speed Switching Nano-Device with Sub-Nanometer Gaps. , 2018, , .		0
43	Lorentz Nanoplasmonics for Nonlinear Generation. Nano Letters, 2018, 18, 8030-8034.	9.1	7
44	Reaching the Limits of Enhancement in (Sub)Nanometer Metal Structures. ACS Photonics, 2018, 5, 4222-4228.	6.6	15
45	Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap. Nano Letters, 2018, 18, 3637-3642.	9.1	134
46	Analysis of Egg White Protein Composition with Double Nanohole Optical Tweezers. ACS Omega, 2018, 3, 5266-5272.	3.5	26
47	Template-stripped nanoaperture tweezer integrated with optical fiber. Optics Express, 2018, 26, 9607.	3.4	22
48	Quantum plasmonic epsilon near zero: field enhancement and cloaking. Optics Express, 2018, 26, 15656.	3.4	9
49	Nonlinear Plasmonic Metasurfaces. Advanced Optical Materials, 2018, 6, 1800274.	7.3	32
50	Harvesting Dual-Wavelength Excitation with Plasmon-Enhanced Emission from Upconverting Nanoparticles. ACS Photonics, 2018, 5, 3507-3512.	6.6	21
51	Monitoring Gold Nanoparticle Growth in Situ via the Acoustic Vibrations Probed by Four-Wave Mixing. Analytical Chemistry, 2017, 89, 2196-2200.	6.5	8
52	Modal theory of modified spontaneous emission of a quantum emitter in a hybrid plasmonic photonic-crystal cavity system. Physical Review A, 2017, 95, .	2.5	53
53	Plasmonic Antireflection Coating for Photoconductive Terahertz Generation. ACS Photonics, 2017, 4, 1350-1354.	6.6	27
54	Switchable Metal–Insulator Phase Transition Metamaterials. Nano Letters, 2017, 17, 2940-2944.	9.1	7

#	Article	IF	CITATIONS
55	Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps. ACS Photonics, 2017, 4, 1108-1113.	6.6	45
56	Coulomb Blockade Plasmonic Switch. Nano Letters, 2017, 17, 2584-2588.	9.1	20
57	Roadmap on structured light. Journal of Optics (United Kingdom), 2017, 19, 013001.	2.2	888
58	Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation. Optics Express, 2017, 25, 22140.	3.4	20
59	Complex coupled mode theory electromagnetic mode solver. Optics Express, 2017, 25, 28337.	3.4	2
60	Characterization of Heterogeneous Protein Mixtures using Single Molecule Double Nanohole Optical Tweezers. , 2017, , .		0
61	Unraveling the dynamics of a single streptavidin protein by optical trapping. , 2017, , .		Ο
62	Superior Terahertz Generation using Plasmon-Enhanced Sub-bandgap Photoconductive Antenna. , 2017, , .		0
63	Nanohole optical tweezers in heterogeneous mixture analysis. , 2017, , .		Ο
64	Probing the acoustic vibrations of complex-shaped metal nanoparticles with four-wave mixing. Optics Express, 2016, 24, 23747.	3.4	9
65	Optical Trapping and Analysis of Single Proteins: Towards an All-Fiber Approach. , 2016, , .		Ο
66	Characterizing gold nanorods in aqueous solution by acoustic vibrations probed with four-wave mixing. Optics Express, 2016, 24, 12458.	3.4	15
67	Nanoparticle Acoustic Resonance Enhanced Nearly Degenerate Four-Wave Mixing. ACS Photonics, 2016, 3, 1421-1425.	6.6	9
68	Laser Tweezers Using Nanoapertures in Metal Films. , 2016, , 1753-1764.		0
69	Gap Plasmon Enhanced Metasurface Third-Harmonic Generation in Transmission Geometry. ACS Photonics, 2016, 3, 1461-1467.	6.6	31
70	Threshold for Terahertz Resonance of Nanoparticles in Water. Nano Letters, 2016, 16, 3638-3641.	9.1	18
71	Theory of Acoustic Raman Modes in Proteins. Physical Review Letters, 2016, 117, 138101.	7.8	11

Nanoparticle electrostriction acoustic resonance enhanced nonlinearity. , 2016, , .

0

#	Article	IF	CITATIONS
73	A supramolecular indicator displacement assay for acetyl amantadine, a proxy biomarker for spermidine/spermine <i>N</i> ¹ -acetyltransferase (SSAT) activity. Canadian Journal of Chemistry, 2016, 94, 969-975.	1.1	4
74	Single-ion detection. Nature Photonics, 2016, 10, 697-698.	31.4	2
75	Characterization of Individual Magnetic Nanoparticles in Solution by Double Nanohole Optical Tweezers. Nano Letters, 2016, 16, 2639-2643.	9.1	35
76	Nonlinear Plasmonics: THz Resonances, Quantum Limits, Interband Enhancement and Aperture Metasurfaces (Invited Talk). , 2016, , .		0
77	Wedge and gap plasmonic resonances in double nanoholes. Optics Express, 2015, 23, 30227.	3.4	16
78	Theory of nanorod antenna resonances including end-reflection phase. Physical Review B, 2015, 91, .	3.2	6
79	Localized and propagating surface plasmon resonances in aperture-based third harmonic generation. Optics Express, 2015, 23, 32006.	3.4	20
80	Nanorod Surface Plasmon Enhancement of Laser-Induced Ultrafast Demagnetization. Scientific Reports, 2015, 5, 15933.	3.3	17
81	Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture. Scientific Reports, 2015, 5, 15852.	3.3	50
82	Optical Trapping and Raman Spectroscopy of a Single MS2 Bacteriophage. , 2015, , .		0
83	Interband transition enhanced third harmonic generation from nanoplasmonic gold― Optical Materials Express, 2015, 5, 2217.	3.0	19
84	Playing the notes of DNA with light: extremely high frequency nanomechanical oscillations. Nanoscale, 2015, 7, 2295-2300.	5.6	29
85	Molecular weight characterization of single globular proteins using optical nanotweezers. Analyst, The, 2015, 140, 4799-4803.	3.5	42
86	Label-free free-solution nanoaperture optical tweezers for single molecule protein studies. Analyst, The, 2015, 140, 4760-4778.	3.5	71
87	Raman spectroscopy of single nanoparticles in a double-nanohole optical tweezer system. Journal of Optics (United Kingdom), 2015, 17, 102001.	2.2	23
88	Effective wavelength scaling of rectangular aperture antennas. Optics Express, 2015, 23, 10385.	3.4	6
89	Nano-bio-optomechanics: nanoaperture tweezers probe single nanoparticles, proteins, and their interactions. , 2015, , .		0
90	Single Molecule Protein Sizing in Double Nano-hole Optical Tweezers. , 2015, , .		1

90 Single Molecule Protein Sizing in Double Nano-hole Optical Tweezers. , 2015, , .

Reuven Gordon

#	Article	IF	CITATIONS
91	Mapping low frequency vibrational spectra of ssDNA using DNH optical trap. , 2015, , .		Ο
92	Label-Free Free Solution Single Protein-Small Molecule Binding Kinetics: An Optical Tweezer Approach. , 2015, , .		1
93	Plasmon-Enhanced below Bandgap Photoconductive Terahertz Generation and Detection. Nano Letters, 2015, 15, 8306-8310.	9.1	51
94	Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution. Nature Photonics, 2015, 9, 68-72.	31.4	91
95	Laser Tweezers Using Nanoapertures in Metal Films. , 2015, , 1-12.		0
96	Template stripped double nanohole in a gold film for nano-optical tweezers. Nanotechnology, 2014, 25, 495301.	2.6	18
97	New physics and applications of apertures in thin metal films. Proceedings of SPIE, 2014, , .	0.8	0
98	Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles. Optics Letters, 2014, 39, 6415.	3.3	44
99	Super-transmission from a finite subwavelength arrangement of slits in a metal film. Optics Express, 2014, 22, 13418.	3.4	19
100	Optical tweezers for free-solution label-free single bio-molecule studies. , 2014, , .		1
101	Double nanohole optical tweezers visualize protein p53 suppressing unzipping of single DNA-hairpins. Biomedical Optics Express, 2014, 5, 1886.	2.9	76
102	Trace cancer biomarker quantification using polystyrene-functionalized gold nanorods. Biomedical Optics Express, 2014, 5, 4101.	2.9	2
103	Effect of surface roughness on self-assembled monolayer plasmonic ruler in nonlocal regime. Optics Express, 2014, 22, 9604.	3.4	31
104	Probing the Quantum Tunneling Limit of Plasmonic Enhancement by Third Harmonic Generation. Nano Letters, 2014, 14, 6651-6654.	9.1	145
105	Subdiffraction Focusing Enabled by a Fano Resonance. Physical Review X, 2014, 4, .	8.9	21
106	Nanoplasmonics enhanced terahertz sources. Optics Express, 2014, 22, 27992.	3.4	48
107	Quantification of High-Efficiency Trapping of Nanoparticles in a Double Nanohole Optical Tweezer. Nano Letters, 2014, 14, 853-856.	9.1	163
108	Quantification of an exogenous cancer biomarker in urinalysis by Raman Spectroscopy. Analyst, The, 2014, 139, 5375-5378.	3.5	17

#	Article	IF	CITATIONS
109	Label-Free Free-Solution Single-Molecule Protein–Small Molecule Interaction Observed by Double-Nanohole Plasmonic Trapping. ACS Photonics, 2014, 1, 389-393.	6.6	68
110	A Label-Free Untethered Approach to Single-Molecule Protein Binding Kinetics. Nano Letters, 2014, 14, 5787-5791.	9.1	55
111	Trapping, unfolding, identifying, and binding single proteins using the double-nanohole optical trap. Proceedings of SPIE, 2014, , .	0.8	0
112	Real-Time Dynamics of Single Protein-Small Molecule Interactions with Label-Free, Free-Solution Double-Nanohole Optical Trapping. , 2014, , .		0
113	Probing Magnetic Plasmons with Vortex Electron Beams. , 2014, , 375-391.		0
114	Sensing nanoparticles using a double nanohole optical trap. Lab on A Chip, 2013, 13, 4142.	6.0	66
115	Enhanced Terahertz Bandwidth and Power from GaAsBiâ€based Sources. Advanced Optical Materials, 2013, 1, 714-719.	7.3	19
116	Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing. Lab on A Chip, 2013, 13, 2541.	6.0	42
117	Quantification of ovarian cancer markers with integrated microfluidic concentration gradient and imaging nanohole surface plasmon resonance. Analyst, The, 2013, 138, 1450.	3.5	58
118	Observing single protein binding by optical transmission through a double nanohole aperture in a metal film. Biomedical Optics Express, 2013, 4, 1504.	2.9	59
119	Double nanohole optical trapping: dynamics and protein-antibody co-trapping. Lab on A Chip, 2013, 13, 2563.	6.0	50
120	Optical Trapping of Nanoparticles. Journal of Visualized Experiments, 2013, , e4424.	0.3	4
121	Surface-Enhanced Raman Spectroscopy Using Lipid Encapsulated Plasmonic Nanoparticles and J-Aggregates To Create Locally Enhanced Electric Fields. Journal of Physical Chemistry C, 2013, 117, 1879-1886.	3.1	18
122	<i>In Situ</i> Plasmonic Counter for Polymerization of Chains of Gold Nanorods in Solution. ACS Nano, 2013, 7, 5901-5910.	14.6	63
123	Nonlinear Plasmonics: Four-photon Near-field Photolithography using Optical Antennas. Plasmonics, 2013, 8, 1655-1665.	3.4	3
124	Nanoaperture Optical Co-Trapping of a Protein-Antibody Pair. , 2013, , .		0
125	Double Nanohole Aperture Optical Trapping. , 2013, , .		0
126	Flow-dependent double-nanohole optical trapping of 20â€nm polystyrene nanospheres. Scientific Reports, 2012, 2, 966.	3.3	33

#	Article	IF	CITATIONS
127	Limits for superfocusing with finite evanescent wave amplification. Optics Letters, 2012, 37, 912.	3.3	7
128	Vortex electron energy loss spectroscopy for near-field mapping of magnetic plasmons. Optics Express, 2012, 20, 15024.	3.4	27
129	Analysis of hybrid plasmonic-photonic crystal structures using perturbation theory. Optics Express, 2012, 20, 16992.	3.4	7
130	Plasmon hybridization for enhanced nonlinear optical response. Optics Express, 2012, 20, 29923.	3.4	15
131	Optical trapping of an encapsulated quantum dot using a double nanohole aperture in a metal film. , 2012, , .		1
132	Nanoplasmonic Terahertz Photoconductive Switch on GaAs. Nano Letters, 2012, 12, 6255-6259.	9.1	92
133	Optimizing the resolution of nanohole arrays in metal films for refractive-index sensing. Applied Physics A: Materials Science and Processing, 2012, 109, 775-780.	2.3	9
134	Tailored SERS substrates obtained with cathodic arc plasma ion implantation of gold nanoparticles into a polymer matrix. Physical Chemistry Chemical Physics, 2012, 14, 2050.	2.8	21
135	Surface-Enhanced Resonance Raman Scattering on Gold Concentric Rings: Polarization Dependence and Intensity Fluctuations. Journal of Physical Chemistry C, 2012, 116, 2672-2676.	3.1	19
136	Nanophotonics using a subwavelength aperture in a metal film. Nanotechnology Reviews, 2012, 1, 339-362.	5.8	10
137	Optical Trapping of a Single Protein. Nano Letters, 2012, 12, 402-406.	9.1	408
138	Side-by-Side Assembly of Gold Nanorods Reduces Ensemble-Averaged SERS Intensity. Journal of Physical Chemistry C, 2012, 116, 5538-5545.	3.1	67
139	Optofluidic Concentration: Plasmonic Nanostructure as Concentrator and Sensor. Nano Letters, 2012, 12, 1592-1596.	9.1	121
140	Antenna Design for Directivity-Enhanced Raman Spectroscopy. International Journal of Optics, 2012, 2012, 1-8.	1.4	5
141	Single Molecule Directivity Enhanced Raman Scattering using Nanoantennas. Nano Letters, 2012, 12, 2625-2630.	9.1	123
142	Near-field plates in the visible-IR regime using rectangular subwavelength apertures. , 2011, , .		1
143	Directivity-enhanced Raman spectroscopy using a parabolic reflector nanoantenna. , 2011, , .		0
144	Tuning the resonance of silver nanoprisms by plasmonic hybridization with a thin gold film. , 2011, , .		0

#	Article	IF	CITATIONS
145	Detecting Antibodies Secreted by Trapped Cells Using Extraordinary Optical Transmission. IEEE Sensors Journal, 2011, 11, 2732-2739.	4.7	9
146	Enhanced sensitivity using rectangular nanohole arrays in metal for biosensing applications. , 2011, , .		0
147	Optical Trapping of 12 nm Dielectric Spheres Using Double-Nanoholes in a Gold Film. Nano Letters, 2011, 11, 3763-3767.	9.1	232
148	Directivity Enhanced Raman Spectroscopy Using Nanoantennas. Nano Letters, 2011, 11, 1800-1803.	9.1	89
149	Extraordinary Optical Transmission Brightens Near-Field Fiber Probe. Nano Letters, 2011, 11, 355-360.	9.1	80
150	Nanoplasmonics as nanofluidics: transport and sensing in flowthrough nanohole arrays. , 2011, , .		0
151	Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles. Optics Express, 2011, 19, 1648.	3.4	27
152	Tuning plasmonic resonances of an annular aperture in metal plate. Optics Express, 2011, 19, 5912.	3.4	25
153	Intensity based surface plasmon resonance sensor using a nanohole rectangular array. Optics Express, 2011, 19, 15041.	3.4	70
154	One-step integration of metal nanoparticle in photonic crystal nanobeam cavity. Optics Express, 2011, 19, 22462.	3.4	22
155	Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2011, 133, 7563-7570.	13.7	251
156	Design and fabrication of resonant coaxial nanoapertures in a gold film. , 2011, , .		0
157	Improved Performance of Nanohole Surface Plasmon Resonance Sensors by the Integrated Response Method. IEEE Photonics Journal, 2011, 3, 441-449.	2.0	25
158	Hyperspectral Nanoscale Imaging on Dielectric Substrates with Coaxial Optical Antenna Scan Probes Nano Letters, 2011, 11, 1201-1207.	9.1	111
159	Relating localized nanoparticle resonances to an associated antenna problem. Physical Review B, 2011, 84, .	3.2	28
160	Integrated nanohole array surface plasmon resonance sensing device using a dual-wavelength source. Journal of Micromechanics and Microengineering, 2011, 21, 115001.	2.6	41
161	Opto-nanofluidic biosensing and manipulation using nanoholes in metal films. , 2011, , .		0
162	Theory of plasmonic nanorod resonances. , 2010, , .		0

#	Article	IF	CITATIONS
163	Electromagnetic transmission resonances for a single annular aperture in a metal plate. Physical Review A, 2010, 82, .	2.5	15
164	Nanohole Arrays in Metal Films as Integrated Chemical Sensors and Biosensors. Springer Series on Chemical Sensors and Biosensors, 2010, , 155-179.	0.5	1
165	Resonant optical transmission through holeâ€arrays in metal films: physics and applications. Laser and Photonics Reviews, 2010, 4, 311-335.	8.7	150
166	Gigantic absorption enhancement using nanostructured metal films: application to organic solar cells. Proceedings of SPIE, 2010, , .	0.8	0
167	Flow-Through vs Flow-Over: Analysis of Transport and Binding in Nanohole Array Plasmonic Biosensors. Analytical Chemistry, 2010, 82, 10015-10020.	6.5	103
168	Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications. Optics Express, 2010, 18, 19009.	3.4	32
169	Design and Analysis of High-Index-Contrast Gratings Using Coupled Mode Theory. IEEE Photonics Journal, 2010, 2, 884-893.	2.0	15
170	Plasmonics. , 2010, , 18-1-18-37.		0
171	Microfluidic and nanofluidic integration of plasmonic substrates for biosensing. Proceedings of SPIE, 2009, , .	0.8	4
172	Self-induced back-action optical trapping of dielectric nanoparticles. Nature Physics, 2009, 5, 915-919.	16.7	481
173	Attomolar Protein Detection Using in-Hole Surface Plasmon Resonance. Journal of the American Chemical Society, 2009, 131, 436-437.	13.7	131
174	Metal nano-grid reflective wave plate. Optics Express, 2009, 17, 2871.	3.4	21
175	Total optical transmission through a small hole in a metal waveguide screen. Optics Express, 2009, 17, 4433.	3.4	20
176	Gap plasmon mode of eccentric coaxial metal waveguide. Optics Express, 2009, 17, 5311.	3.4	10
177	Reflection of Cylindrical Surface Waves. Optics Express, 2009, 17, 18621.	3.4	51
178	Nanoholes As Nanochannels: Flow-through Plasmonic Sensing. Analytical Chemistry, 2009, 81, 4308-4311.	6.5	264
179	Proposal for Superfocusing at Visible Wavelengths Using Radiationless Interference of a Plasmonic Array. Physical Review Letters, 2009, 102, 207402.	7.8	49
180	Nanohole arrays in metal films as optofluidic elements: progress and potential. Microfluidics and Nanofluidics, 2008, 4, 107-116.	2.2	79

#	Article	IF	CITATIONS
181	Surface plasmon nanophotonics: A tutorial. IEEE Nanotechnology Magazine, 2008, 2, 12-18.	1.3	33
182	Plasmonic Bragg Reflectors: Optimization and Application to Isolation. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1502-1508.	2.9	2
183	Flow-dependent optofluidic particle trapping and circulation. Lab on A Chip, 2008, 8, 1350.	6.0	30
184	Proposal for Compact Optical Filters Using Large Index Step Binary Supergratings. IEEE Photonics Technology Letters, 2008, 20, 676-678.	2.5	5
185	Spatially Filtered Feedback for Mode Control in Vertical-Cavity Surface-Emitting Lasers. Journal of Lightwave Technology, 2008, 26, 3893-3900.	4.6	4
186	Theory of dielectric micro-sphere dynamics in a dual-beam optical trap. Optics Express, 2008, 16, 9306.	3.4	36
187	Surface plasmon microcavity for resonant transmission through a slit in a gold film. Optics Express, 2008, 16, 9708.	3.4	37
188	A New Generation of Sensors Based on Extraordinary Optical Transmission. Accounts of Chemical Research, 2008, 41, 1049-1057.	15.6	492
189	Biaxial nanohole array sensing and optofluidic integration. , 2008, , .		3
190	Localized Raman Enhancement from a Double-Hole Nanostructure in a Metal Film. Journal of Physical Chemistry C, 2008, 112, 15098-15101.	3.1	62
191	Enhanced Raman Scattering from Nanoholes in a Copper Film. Journal of Physical Chemistry C, 2008, 112, 17051-17055.	3.1	48
192	Commentary: Extraordinary optical transmission for surface-plasmon-resonance-based sensing. Journal of Nanophotonics, 2008, 2, 020305.	1.0	5
193	Nanohole Arrays as Optical and Fluidic Elements for Sensing. , 2008, , .		0
194	Development of plasmonic substrates for biosensing. Proceedings of SPIE, 2008, , .	0.8	5
195	Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays. Applied Physics Letters, 2008, 92, .	3.3	37
196	Polarization controlled diffraction and near-field hot-spots in a quasiperiodic nanohole array in a gold film. , 2008, , .		0
197	Compact Binary Super-Gratings Using a Large Refractive Index Step. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
198	Plasmonic Bragg Reflectors for Subwavelength Hole Arrays in a Metal Film. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0

#	Article	IF	CITATIONS
199	Angle-Dependence of Nano-Slit Optical Transmission. , 2007, , .		0
200	Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film. Optics Express, 2007, 15, 12995.	3.4	30
201	Inside Vertical-Cavity Surface-Emitting Lasers: Extracting the Refractive Index From Spatial-Spectral Mode Images. IEEE Journal of Quantum Electronics, 2007, 43, 225-229.	1.9	6
202	Bethe's aperture theory for arrays. Physical Review A, 2007, 76, .	2.5	44
203	On-Chip Surface-Based Detection with Nanohole Arrays. Analytical Chemistry, 2007, 79, 4094-4100.	6.5	258
204	Apex-Enhanced Raman Spectroscopy Using Double-Hole Arrays in a Gold Film. Journal of Physical Chemistry C, 2007, 111, 2347-2350.	3.1	96
205	Optical transmission properties and enhanced loss for randomly positioned apertures in a metal film. Applied Physics B: Lasers and Optics, 2007, 87, 239-242.	2.2	8
206	Resonant light transmission through a nanohole in a metal film. IEEE Nanotechnology Magazine, 2006, 5, 291-294.	2.0	25
207	Light in a subwavelength slit in a metal: Propagation and reflection. Physical Review B, 2006, 73, .	3.2	193
208	Overlapping Double-Hole Nanostructure in a Metal Film for Localized Field Enhancement. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1228-1232.	2.9	16
209	Nondegenerate Phase-Locking of a Semiconductor Laser by Sideband Injection. IEEE Photonics Technology Letters, 2006, 18, 2248-2250.	2.5	0
210	Surface Plasmonâ^'Quantum Dot Coupling from Arrays of Nanoholes. Journal of Physical Chemistry B, 2006, 110, 8307-8313.	2.6	64
211	Vectorial method for calculating the Fresnel reflection of surface plasmon polaritons. Physical Review B, 2006, 74, .	3.2	34
212	Double nanohole apex-enhanced transmission in metal films. Applied Physics B: Lasers and Optics, 2006, 84, 25-28.	2.2	32
213	Localized field enhancement in metal films using an overlapping double-hole nanostructure. , 2006, , .		0
214	Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film. Applied Physics Letters, 2006, 88, 261104.	3.3	100
215	Integration and Application of a Surface Plasmon Sensor Array On-Chip. , 2006, , .		0
216	Enhanced Fluorescence from Arrays of Nanoholes in a Gold Film. Journal of the American Chemical Society, 2005, 127, 14936-14941.	13.7	203

#	Article	IF	CITATIONS
217	Basis and Lattice Polarization Mechanisms for Light Transmission through Nanohole Arrays in a Metal Film. Nano Letters, 2005, 5, 1243-1246.	9.1	66
218	Increased cut-off wavelength for a subwavelength hole in a real metal. Optics Express, 2005, 13, 1933.	3.4	283
219	Electrokinetically-Induced Flow Over a Nano-Hole Array Sensor. , 2004, , 213.		1
220	Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films. Langmuir, 2004, 20, 4813-4815.	3.5	715
221	Nanohole-Enhanced Raman Scattering. Nano Letters, 2004, 4, 2015-2018.	9.1	418
222	Harmonic oscillation in a spatially finite array waveguide. Optics Letters, 2004, 29, 2752.	3.3	52
223	Transverse mode-locking in microcavity lasers. Applied Physics Letters, 2002, 81, 4523-4525.	3.3	24
224	Investigations of the spectral characteristics of 980-nm InGaAs-GaAs-AlGaAs lasers. IEEE Journal of Quantum Electronics, 1997, 33, 1801-1809.	1.9	22