Yanbing Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3106442/publications.pdf

Version: 2024-02-01

279798 302126 1,733 74 23 39 citations h-index g-index papers 74 74 74 3219 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photocatalytic Synthesis and Photovoltaic Application of Ag-TiO ₂ Nanorod Composites. Nano Letters, 2013, 13, 5698-5702.	9.1	173
2	Ligand-free rutile and anatase TiO ₂ nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC Advances, 2017, 7, 20084-20092.	3.6	135
3	Fluorine substituted thiophene–quinoxalinecopolymer to reduce the HOMO level and increase the dielectric constant for high open-circuit voltage organic solar cells. Journal of Materials Chemistry C, 2013, 1, 630-637.	5. 5	101
4	High-Performance Photodiode-Type Photodetectors Based on Polycrystalline Formamidinium Lead Iodide Perovskite Thin Films. Scientific Reports, 2018, 8, 11157.	3.3	90
5	Using Bulk Heterojunctions and Selective Electron Trapping to Enhance the Responsivity of Perovskite–Graphene Photodetectors. Advanced Functional Materials, 2017, 27, 1704173.	14.9	79
6	Synthesis, optical properties, and superlattice structure of Cu(I)-doped CdS nanocrystals. Applied Physics Letters, $2010,97,1$	3.3	56
7	Synthesis and self-assembly of Cu1.94S–ZnS heterostructured nanorods. CrystEngComm, 2010, 12, 4124.	2.6	54
8	The Trapped Charges at Grain Boundaries in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2107125.	14.9	47
9	Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol. Applied Physics Letters, 2010, 96, .	3.3	46
10	Two-dimensional organic–inorganic hybrid perovskite field-effect transistors with polymers as bottom-gate dielectrics. Journal of Materials Chemistry C, 2019, 7, 4004-4012.	5.5	45
11	Active terahertz device based on optically controlled organometal halide perovskite. Applied Physics Letters, 2015, 107, .	3.3	44
12	Enhanced performance of tin halide perovskite solar cell by addition of lead thiocyanate. RSC Advances, 2018, 8, 14025-14030.	3.6	37
13	Synthesis of ultrathin two-dimensional organic–inorganic hybrid perovskite nanosheets for polymer field-effect transistors. Journal of Materials Chemistry C, 2018, 6, 3945-3950.	5 . 5	36
14	Upconversion multicolor tuning: Red to green emission from Y2O3:Er, Yb nanoparticles by calcination. Applied Physics Letters, 2013, 102, .	3.3	33
15	Self-Assembled TiO ₂ Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells. Chemistry of Materials, 2015, 27, 44-52.	6.7	33
16	Monolayer graphene based organic optical terahertz modulator. Applied Physics Letters, 2017, 110, .	3.3	32
17	High sensitivity, fast response and low operating voltage organic photodetectors by incorporating a water/alcohol soluble conjugated polymer anode buffer layer. RSC Advances, 2017, 7, 1743-1748.	3.6	31
18	Enhanced efficiency and light stability of planar perovskite solar cells by diethylammonium bromide induced large-grain 2D/3D hybrid film. Organic Electronics, 2019, 67, 101-108.	2.6	28

#	Article	IF	CITATIONS
19	Effects of alkanethiols chain length on the synthesis of Cu _{2â^'x} S nanocrystals: phase, morphology, plasmonic properties and electrical conductivity. RSC Advances, 2014, 4, 54547-54553.	3.6	27
20	Charge carriers at organic heterojunction interface: Exciplex emission or electroplex emission?. Journal of Applied Physics, 2007, 101, 096101.	2.5	26
21	Synthesis of Cu _{2â^x} S nanocrystals induced by foreign metal ions: phase and morphology transformation and localized surface plasmon resonance. CrystEngComm, 2014, 16, 8684-8690.	2.6	26
22	Two-dimensional additive diethylammonium iodide promoting crystal growth for efficient and stable perovskite solar cells. RSC Advances, 2019, 9, 7984-7991.	3.6	25
23	Efficient Quasi-Two-Dimensional Perovskite Light-Emitting Diodes with Improved Multiple Quantum Well Structure. ACS Applied Materials & Samp; Interfaces, 2020, 12, 1721-1727.	8.0	25
24	Enhanced amplified spontaneous emission from morphology-controlled organic–inorganic halide perovskite films. RSC Advances, 2015, 5, 103674-103679.	3.6	23
25	Temperature dependent amplified spontaneous emission of vacuum annealed perovskite films. RSC Advances, 2017, 7, 15911-15916.	3.6	22
26	High-performance light-emitting diode with poly(ethylene oxide) passivated quasi two dimensional perovskite emitting layer. Organic Electronics, 2018, 63, 216-221.	2.6	22
27	Solution-processed organic field-effect transistors with cross-linked poly(4-vinylphenol)/polyvinyl alcohol bilayer dielectrics. Applied Surface Science, 2019, 478, 699-707.	6.1	22
28	Charge Transport in 2D Layered Mixed Sn–Pb Perovskite Thin Films for Fieldâ€Effect Transistors. Advanced Electronic Materials, 2021, 7, 2100384.	5.1	22
29	Negative differential resistance and carrier transport of electrically bistable devices based on poly(N-vinylcarbazole)-silver sulfide composites. Nanoscale Research Letters, 2014, 9, 128.	5.7	21
30	Property Modulation of Two-Dimensional Lead-Free Perovskite Thin Films by Aromatic Polymer Additives for Performance Enhancement of Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 24272-24284.	8.0	21
31	Enhanced performance of tin halide perovskite solar cells by addition of hydrazine monohydrobromide. Organic Electronics, 2020, 82, 105728.	2.6	20
32	Electrical bistability of copper (I) sulfide nanocrystals blending with a semiconducting polymer. Applied Physics Letters, 2009, 95, 143115.	3.3	19
33	Role of nanoparticle surface defects in the conduction mechanism of polymer–nanoparticle electrical bistable devices. RSC Advances, 2017, 7, 54128-54135.	3.6	15
34	Improvement of amplified spontaneous emission performance of conjugated polymer waveguides with a low loss cladding. Applied Physics Letters, 2012, 101, 153305.	3.3	14
35	Interface studies of well-controlled polymer bilayers and field-effect transistors prepared by a mixed-solvent method. RSC Advances, 2018, 8, 11272-11279.	3.6	14
36	Electrical bistability and negative differential resistance in diodes based on silver nanoparticle-poly(N-vinylcarbazole) composites. Journal of Applied Physics, 2010, 108, 094320.	2.5	13

#	Article	IF	CITATIONS
37	Discrete SnO 2 Nanoparticleâ€Modified Poly(3,4â€Ethylenedioxythiophene):Poly(Styrenesulfonate) for Efficient Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900162.	5.8	13
38	Mixed-dimensional self-assembly organic–inorganic perovskite microcrystals for stable and efficient photodetectors. Journal of Materials Chemistry C, 2020, 8, 5399-5408.	5.5	13
39	Active bidirectional electrically-controlled terahertz device based on dimethyl sulfoxide-doped PEDOT:PSS. Optics Express, 2018, 26, 25849.	3.4	12
40	Enhanced performance in inverted polymer solar cells employing microwave-annealed sol-gel ZnO as electron transport layers. Organic Electronics, 2017, 42, 107-114.	2.6	11
41	Sensitive, fast, stable, and broadband polymer photodetector with introducing TiO2 nanocrystal trap states. Organic Electronics, 2018, 59, 63-68.	2.6	11
42	Scalable Grapheneâ€onâ€Organometal Halide Perovskite Heterostructure Fabricated by Dry Transfer. Advanced Materials Interfaces, 2019, 6, 1801419.	3.7	11
43	Ambipolar transport in two-dimensional Sn-based perovskite field-effect transistors using an aliphatic polymer-assisted method. Journal of Materials Chemistry A, 2021, 9, 22842-22853.	10.3	11
44	Photovoltaic properties of MEH-PPV/TiO2 nanocomposites. Science Bulletin, 2008, 53, 2743-2747.	9.0	10
45	Effects of gate dielectric thickness and semiconductor thickness on device performance of organic field-effect transistors based on pentacene. Science China Technological Sciences, 2014, 57, 1142-1146.	4.0	10
46	Highâ€Performance Polymer Photodetector Using the Nonâ€Thermalâ€andâ€Nonâ€Ultraviolet–Ozoneâ€Treate SnO 2 Interfacial Layer. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900531.	ed 2.4	10
47	Grain Growth of MAPbl ₃ via Diethylammonium Bromide Induced Grain Mergence. ACS Applied Materials & Diethylammonium Bromide Induced Grain Mergence. ACS	8.0	10
48	An <i>in situ</i> rewritable electrically-erasable photo-memory device for terahertz waves. Nanoscale, 2020, 12, 3343-3350.	5.6	10
49	investigation on Thermal Degradation Process of Polymer Solar Cells Based on Blend of PBDTT1-C and ml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"> <mml:mrow><mml:msub><mml:mrow><mml:mtext>PC</mml:mtext></mml:mrow><mml:mrow><mml:mathvariant="bold">70</mml:mathvariant="bold"></mml:mrow></mml:msub></mml:mrow> BM.	n 2 05	9
50	Efficient polymer solar cells with polyethylene glycol cathode buffer layer and improved PEDOT:PSS conductivity. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1800-1804.	1.8	9
51	Effects of photo-induced defects on the performance of PBDTTT-C/PC ₇₀ BM solar cells. Physica Status Solidi - Rapid Research Letters, 2015, 9, 120-124.	2.4	9
52	Photocatalytic synthesis of gold nanoparticles using TiO ₂ nanorods: a mechanistic investigation. Physical Chemistry Chemical Physics, 2019, 21, 18753-18757.	2.8	9
53	Surface plasmonic effect and scattering effect of Au nanorods on the performance of polymer bulk heterojunction solar cells. Science China Technological Sciences, 2013, 56, 1865-1869.	4.0	8
54	Transient Photocurrent Response of Plasmon-Enhanced Polymer Solar Cells with Gold Nanoparticles. Materials, 2015, 8, 4050-4060.	2.9	8

#	Article	IF	CITATIONS
55	Effects of solvent additives on trapâ€assisted recombination in P3HT:ICBA based polymer solar cells. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2169-2173.	1.8	7
56	Strong Triplet-Exciton–LO-Phonon Coupling in Two-Dimensional Layered Organic–Inorganic Hybrid Perovskite Single Crystal Microflakes. Journal of Physical Chemistry Letters, 2021, 12, 2133-2141.	4.6	7
57	Improving ternary blend morphology by adding a conjugated molecule into non-fullerene polymer solar cells. RSC Advances, 2020, 10, 43508-43513.	3.6	6
58	Influence of heterojunction interface on exciplex emission from organic light-emitting diodes under electric fields. Applied Physics A: Materials Science and Processing, 2008, 90, 475-478.	2.3	5
59	Electrical bistability and charge-transport mechanisms in cuprous sulfide nanosphere-poly(N-vinylcarbazole) composite films. Journal of Nanoparticle Research, 2011, 13, 7263-7269.	1.9	5
60	Investigation on the Overshoot of Transient Open-Circuit Voltage in Methylammonium Lead Iodide Perovskite Solar Cells. Materials, 2018, 11, 2407.	2.9	5
61	Stable Terahertz In Situ Photo-Writable Electrically Erasable Memory with a CsPbI ₃ :Ag/SnO ₂ /PEDOT:PSS Hybrid Structure. ACS Applied Electronic Materials, 2021, 3, 1006-1014.	4.3	5
62	Verification of p-n junctions in polymer light-emitting electrochemical cells via electrical characterization. Applied Physics Letters, 2009, 95, .	3.3	4
63	Discrete SnO ₂ Nanoparticleâ€Modified Poly(3,4â€Ethylenedioxythiophene):Poly(Styrenesulfonate) for Efficient Perovskite Solar Cells. Solar Rrl, 2019, 3, 1970103.	5 . 8	4
64	Impacts of carrier trapping and ion migration on charge transport of perovskite solar cells with TiO _x electron transport layer. RSC Advances, 2020, 10, 28083-28089.	3.6	4
65	Ultrafast carrier response of CH ₃ /MoO ₃ /graphene heterostructure for terahertz waves. Journal Physics D: Applied Physics, 2021, 54, 325102.	2.8	4
66	Aspect-ratio controllable growth of rectangular cesium lead bromide crystallites on PTAA modified substrates. Journal of Materials Chemistry C, 2022, 10, 6473-6480.	5 . 5	3
67	Overall Enhanced Performance of Polymer Photodetectors by Coâ€Modifying ITO with PEIE and ZnO. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	2.4	3
68	Role of Hydroxyl on Conductivity Switching of Poly(ethylene oxide)/TiO 2 Electrical Bistable Devices. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900443.	1.8	2
69	Nanowire Junction Induced High Threshold Voltage in Poly(3â€hexylthiophene) Mesoscale Crystalline Thinâ€Film Transistors with Significantly Enhanced Mobility. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900723.	2.4	2
70	Highâ€Performance Polymer Photodetectors using ZnO Nanocrystal Trap States. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100003.	2.4	2
71	Morphology engineering of a hybrid perovskite for active terahertz memory modulation. Optics Express, 2022, 30, 2626.	3.4	2
72	Oxygen Effects on Performance of Electrically Bistable Devices Based on Hybrid Silver Sulfide Poly(N-vinylcarbazole) Nanocomposites. Nanoscale Research Letters, 2016, 11, 63.	5.7	1

YANBING HOU

#	Article	IF	CITATIONS
73	Metal oxide nanoparticle-modified ITO electrode for high-performance solution-processed perovskite photodetectors. RSC Advances, 2022, 12, 5638-5647.	3.6	1
74	Aggregation-induced emission tetraphenylethylene derivative as optical sensor for ammonia detection. Materials Technology, 0, , 1-6.	3.0	0