Jukka Viheriälä

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3105721/publications.pdf

Version: 2024-02-01

1163117 996975 20 216 8 15 citations g-index h-index papers 20 20 20 173 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Hybrid silicon photonics DBR laser based on flip-chip integration of GaSb amplifiers and Âμm-scale SOI waveguides. Optics Express, 2022, 30, 24995.	3.4	11
2	High-Power 1.5 $\hat{1}$ /4m Tapered Distributed Bragg Reflector Laser Diodes for Eye-Safe LIDAR. IEEE Photonics Technology Letters, 2020, 32, 1249-1252.	2.5	4
3	GaSb diode lasers tunable around 2.6 <i>$\hat{l}^{1/4}$</i> m using silicon photonics resonators or external diffractive gratings. Applied Physics Letters, 2020, 116, .	3.3	21
4	High Peak Power Laser Diodes for Eye Safe LIDAR with Integrated Wavelength Locking Element., 2019,,.		0
5	Design Strategies for Power Scaling of GaSb-Based Superluminescent Diodes for 2 – 3 Î⅓m Wavelength Range. , 2019, , .		0
6	GaSb-Based 2.55 \hat{l} 4m External Cavity Diode Lasers Employing Ruled Diffraction Gratings and External Silicon Photonics Vernier Reflectors. , 2019, , .		0
7	High Power \$1.5mu\$ m Pulsed Laser Diode With Asymmetric Waveguide and Active Layer Near p-cladding. IEEE Photonics Technology Letters, 2019, 31, 1635-1638.	2.5	14
8	High power GalnNAs superluminescent diodes emitting over 400 mW in the 1.2 <i>\hat{l}/4</i> m wavelength range. Applied Physics Letters, 2019, 115, .	3.3	5
9	High-power single mode GaSb-based 2 <i>μ</i> m superluminescent diode with double-pass gain. Applied Physics Letters, 2019, 115, .	3.3	7
10	High-power $1.5\hat{l}$ 4m laser diodes for LIDAR applications. , 2019, , .		3
11	GaSb superluminescent diodes with broadband emission at 2.55 <i>μ</i> m. Applied Physics Letters, 2018, 112, .	3.3	15
12	High-Power 1.5-\$mu\$ m Broad Area Laser Diodes Wavelength Stabilized by Surface Gratings. IEEE Photonics Technology Letters, 2018, 30, 1870-1873.	2.5	6
13	Low loss GaInNAs/GaAs gain waveguides with U-bend geometry for single-facet coupling in hybrid photonic integration. Applied Physics Letters, 2018, 113, 041104.	3.3	8
14	Multi-wavelength mid-IR light source for gas sensing. Proceedings of SPIE, 2017, , .	0.8	6
14	Multi-wavelength mid-IR light source for gas sensing. Proceedings of SPIE, 2017, , . High-power 1550 nm tapered DBR laser diodes for LIDAR applications. , 2017, , .	0.8	5
		0.8	
15	High-power 1550 nm tapered DBR laser diodes for LIDAR applications. , 2017, , .		5

Jukka ViheriÃ**¤**ä

#	Article	IF	CITATIONS
19	High-power temperature-stable GalnNAs distributed Bragg reflector laser emitting at 1180  nm. Optics Letters, 2016, 41, 657.	3.3	15
20	Applications of UV-nanoimprint soft stamps in fabrication of single-frequency diode lasers. Microelectronic Engineering, 2009, 86, 321-324.	2.4	51