Igor Efimov

List of Publications by Year

 in descending order
Source: https://exaly.com/author-pdf/3105679/publications.pdf

Version: 2024-02-01

3 Optical Imaging of the Heart. Circulation Research, 2004, 95, 21-33.
Optical mapping of repolarization and refractoriness from intact hearts.. Circulation, 1994, 90, 1469-1480.
$1.6 \quad 180$cardiac surgery. Nature Biomedical Engineering, 2020, 4, 997-1009.

13 Journal of Cardiovascular Electrophysiology, 2000, 11, 339-353.14 Computer Three-Dimensional Reconstruction of the Sinoatrial Node. Circulation, 2005, 111, 846-854.1.616315 Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. NatureBiotechnology, 2021, 39, 1228-1238.

Site of Origin and Molecular Substrate of Atrioventricular Junctional Rhythm in the Rabbit Heart.
Circulation Research, 2003, 93, 1102-1110.

20 The Role of Electroporation in Defibrillation. Circulation Research, 2000, 87, 797-804.
2.0

Conduction Remodeling in Human End-Stage Nonischemic Left Ventricular Cardiomyopathy.
Circulation, 2012, 125, 1835-1847.

Materials and Fractal Designs for 3D Multifunctional Integumentary Membranes with Capabilities in
Cardiac Electrotherapy. Advanced Materials, 2015, 27, 1731-1737.

Transmembrane Voltage Changes Produced by Real and Virtual Electrodes During Monophasic
23 Defibrillation Shock Delivered by an Implantable Electrode. Journal of Cardiovascular
Electrophysiology, 1997, 8, 1031-1045.

Transmural Heterogeneity and Remodeling of Ventricular Excitation-Contraction Coupling in Human
Heart Failure. Circulation, 2011, 123, 1881-1890.

Intermittent drivers anchoring to structural heterogeneities as a major pathophysiological
mechanism of human persistent atrial fibrillation. Journal of Physiology, 2016, 594, 2387-2398.
1.3

132
25
2

Differences Between Left and Right Ventricular Chamber Geometry Affect Cardiac Vulnerability to Electric Shocks. Circulation Research, 2005, 97, 168-175.

27 Virtual Electrodeâ€"Induced Reexcitation. Circulation Research, 1999, 85, 1056-1066.
$28 \quad \begin{aligned} & \text { <i>Pitx2<|i> modulates a <i> Tbx5</i> -dependent gene regulatory network to maintain atrial rhythm. } \\ & \text { Science Translational Medicine, 2016, 8, 354ral15. }\end{aligned}$
2.0

124

Science Translational Medicine, 2016, 8, 354ra115.
5.8

123

Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nature Materials, 2021, 20, 1559-1570.

Effects of KATP channel openers diazoxide and pinacidil in coronary-perfused atria and ventricles
32 from failing and non-failing human hearts. Journal of Molecular and Cellular Cardiology, 2011, 51,
215-225.

33 3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting
1.7

107
technique. Optics Express, 2013, 21, 5822.

34 Computer Three-Dimensional Reconstruction of the Atrioventricular Node. Circulation Research,
2008, 102, 975-985.

[^0]1.6

106

37	Subthreshold stimulation of Purkinje fibers interrupts ventricular tachycardia in intact hearts. Experimental study with voltage-sensitive dyes and imaging techniques.. Circulation Research, 1994, 74, 604-619.	2.0	99
38	Human Organotypic Cultured Cardiac Slices: New Platform For High Throughput Preclinical Human Trials. Scientific Reports, 2016, 6, 28798.	1.6	98
39	Dynamics of rotating vortices in the Beeler-Reuter model of cardiac tissue. Chaos, Solitons and Fractals, 1995, 5, 513-526.	2.5	97
40	Molecular architecture of the human specialised atrioventricular conduction axis. Journal of Molecular and Cellular Cardiology, 2011, 50, 642-651.	0.9	97
41	Evidence of Three-Dimensional Scroll Waves with Ribbon-Shaped Filament as a Mechanism of Ventricular Tachycardia in the Isolated Rabbit Heart. Journal of Cardiovascular Electrophysiology, 1999, 10, 1452-1462.	0.8	96
42	Virtual electrode polarization in the far field: implications for external defibrillation. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H1055-H1070.	1.5	94
43	Canonical Wnt Signaling Regulates Atrioventricular Junction Programming and Electrophysiological Properties. Circulation Research, 2015, 116, 398-406.	2.0	90
44	A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science, 2022, 376, 1006-1012.	6.0	90
45	Remodeling of Calcium Handling in Human Heart Failure. Advances in Experimental Medicine and Biology, 2012, 740, 1145-1174.	0.8	88

46 Electroporation of the heart. Europace, 2005, 7, S146-S154.
$47 \quad$ A coupled-clock system drives the automaticity of human sinoatrial nodal pacemaker cells. ScienceSignaling, 2018, 11, .
1.6 85
Anatomy and Electrophysiology of the Human AV Node. PACE - Pacing and Clinical Electrophysiology, 0.5 84
2010, 33, 754-762.
0.9 84
49 Differential KATP channel pharmacology in intact mouse heart. Journal of Molecular and Cellular
Cardiology, 2010, 48, 152-160.Functional anatomy of the murine sinus node: high-resolution optical mapping of ankyrin-B50 heterozygous mice. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299,1.582
H482-H491.
High-Resolution, Three-dimensional Fluorescent Imaging Reveals Multilayer Conduction Pattern in the1.681
Connexin 43 Expression Delineates Two Discrete Pathways in the Human Atrioventricular Junction.
Anatomical Record, 2008, 291, 204-215.

55	Virtual Electrode Effects in Transvenous Defibrillation-Modulation by Structure and Interface: Evidence from Bidomain Simulations and Optical Mapping. Journal of Cardiovascular Electrophysiology, 1998, 9, 949-961.	0.8	76
56	Widespread Down-Regulation of Cardiac Mitochondrial and Sarcomeric Genes in Patients With Sepsis*. Critical Care Medicine, 2017, 45, 407-414.	0.4	76
57	Effects of sterile pericarditis on connexins 40 and 43 in the atria: correlation with abnormal conduction and atrial arrhythmias. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1231-H1241.	1.5	75
58	Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): Standardised reporting for model reproducibility, interoperability, and data sharing. Progress in Biophysics and Molecular Biology, 2011, 107, 4-10.	1.4	75
59	Arrhythmogenic Remodeling of $\hat{2}$ <sub $2<\mid$ sub \rangle Versus $\hat{2}\langle$ sub $\rangle 1<\mid$ sub \rangle Adrenergic Signaling in the Human Failing Heart. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 409-419.	2.1	73
60	The Role of Photon Scattering in Optical Signal Distortion during Arrhythmia and Defibrillation. Biophysical Journal, 2007, 93, 3714-3726.	0.2	71
61	Mitochondrial dysfunction causing cardiac sodium channel downregulation in cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2013, 54, 25-34.	0.9	71
62	Postganglionic nerve stimulation induces temporal inhibition of excitability in rabbit sinoatrial node. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H612-H623.	1.5	68
63	Activation and Repolarization Patterns are Coverned by Different Structural Characteristics of Ventricular Myocardium:.. Journal of Cardiovascular Electrophysiology, 1996, 7, 512-530.	0.8	67
64	A technical review of optical mapping of intracellular calcium within myocardial tissue. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1388-H1401.	1.5	67
65	The role of dynamic instability and wavelength in arrhythmia maintenance as revealed by panoramic imaging with blebbistatin vs. 2,3-butanedione monoxime. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H262-H269.	1.5	66

66 Structure-function relationship in the AV junction. The Anatomical Record, 2004, 280A, 952-965. 2.3

Identification of atrial fibrillation associated genes and functional non-coding variants. Nature
Communications, 2019, 10, 4755.
5.8

64

Innervation and Neuronal Control of the Mammalian Sinoatrial Node a Comprehensive Atlas.
Circulation Research, 2021, 128, 1279-1296.
cAMP-dependent regulation of HCN4 controls the tonic entrainment process in sinoatrial node
pacemaker cells. Nature Communications, 2020, 11, 5555.
5.8

63
\qquad
Rabbit-specific ventricular model of cardiac electrophysiological function including specialized
conduction system. Progress in Biophysics and Molecular Biology, 2011, 107, 90-100.

73	Cx43 and Dual-Pathway Electrophysiology of the Atrioventricular Node and Atrioventricular Nodal Reentry. Circulation Research, 2003, 92, 469-475.	2.0	61
74	Quantification of cardiac fiber orientation using optical coherence tomography. Journal of Biomedical Optics, 2008, 13, 030505.	1.4	61
75	Panoramic imaging reveals basic mechanisms of induction and termination of ventricular tachycardia in rabbit heart with chronic infarction: Implications for low-voltage cardioversion. Heart Rhythm, 2009, 6, 87-97.	0.3	61
76	mRNA Expression Levels in Failing Human Hearts Predict Cellular Electrophysiological Remodeling: A Population-Based Simulation Study. PLoS ONE, 2013, 8, e56359.	1.1	61
77	Virtual electrode theory explains pacing threshold increase caused by cardiac tissue damage. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H2183-H2194.	1.5	59
78	Transient Local Injury Current in Right Ventricular Electrogram After Implantable Cardioverter-Defibrillator Shock Predicts Heart Failure Progression. Journal of the American College of Cardiology, 2009, 54, 822-828.	1.2	58
79	RHYTHM: An Open Source Imaging Toolkit for Cardiac Panoramic Optical Mapping. Scientific Reports, 2018, 8, 2921.	1.6	58
80	Multiple monophasic shocks improve electrotherapy of ventricular tachycardia in a rabbit model of chronic infarction. Heart Rhythm, 2009, 6, 1020-1027.	0.3	54
81	High-Resolution Fluorescent Imaging Does Not Reveal a Distinct Atrioventricular Nodal Anterior Input Channel (Fast Pathway) in the Rabbit Heart During Sinus Rhythm. Journal of Cardiovascular Electrophysiology, 1997, 8, 295-306.	0.8	52
82	A Novel Low-Energy Electrotherapy That Terminates Ventricular Tachycardia With Lower Energy Than a Biphasic Shock When Antitachycardia Pacing Fails. Journal of the American College of Cardiology, 2012, 60, 2393-2398.	1.2	52
83	Enhanced Transmural Fiber Rotation and Connexin 43 Heterogeneity Are Associated With an Increased Upper Limit of Vulnerability in a Transgenic Rabbit Model of Human Hypertrophic Cardiomyopathy. Circulation Research, 2007, 101, 1049-1057.	2.0	50
84	Optical Mapping of the Human Atrioventricular Junction. Circulation, 2008, 117, 1474-1477.	1.6	50
85	Termination of sustained atrial flutter and fibrillation using low-voltage multiple-shock therapy. Heart Rhythm, 2011, 8, 101-108.	0.3	50

Optical Mapping of Action Potentials and Calcium Transients in the Mouse Heart. Journal of Visualized
Experiments, 2011 , , .

Quantification of the Transmural Dynamics of Atrial Fibrillation by Simultaneous Endocardial and 98 Epicardial Optical Mapping in an Acute Sheep Model. Circulation: Arrhythmia and Electrophysiology,

99 Evidence of Superior and Inferior Sinoatrial Nodes in the Mammalian Heart. JACC: ClinicalElectrophysiology, 2020, 6, 1827-1840.101. Tuning the electrical properties of the heart by differential trafficking of KATP ion channelcomplexes. Journal of Cell Science, 2014, 127, 2106-19.
1.2 43
Effects of 2,3-Butanedione Monoxime on Atrial?Atrioventricular Nodal Conduction in Isolated Rabbit
Heart. Journal of Cardiovascular Electrophysiology, 1997, 8, 790-802. 0.8 42Effects of electroporation on optically recorded transmembrane potential responses to103 high-intensity electrical shocks. American Journal of Physiology - Heart and Circulatory Physiology,1.5422004, 286, H412-H418.104 Low-Energy Multistage Atrial Defibrillation Therapy Terminates Atrial Fibrillation With Less Energy2.142Than a Single Shock. Circulation: Arrhythmia and Electrophysiology, 2011, 4, 917-925.Threeâ€dimensional mechanisms of increased vulnerability to electric shocks in myocardial infarction:105 Altered virtual electrode polarizations and conduction delay in the periâ€infarct zone. Journal of1.342Physiology, 2012, 590, 4537-4551.Structureâ€"Function Relationship in the Sinus and Atrioventricular Nodes. Pediatric Cardiology, 2012,
109
110

> Feasibility of a semi-automated method for cardiac conduction velocity analysis of high-resolution activation maps. Computers in Biology and Medicine, 2015, 65, 177-183.
3.9

40

At the Atrioventricular Crossroads: Dual Pathway Electrophysiology in the Atrioventricular Node and its underlying Heterogeneities. Arrhythmia and Electrophysiology Review, 2017, 6, 179.
1.3

40
Present Understanding of Shock Polarity for Internal Defibrillation: The Obvious and Non-Obviour
Clinical Implications. PACE - Pacing and Clinical Electrophysiology, 2006, 29, 885-891. (Electrophysiological mechanisms of antiarrhythmic protection during hypothermia in winter
$0.5 \quad 39$
hibernating versus nonhibernating mammals. Heart Rhythm, 2008, 5, 1587-1596.
0.3

39
Mapping cardiac surface mechanics with structured light imaging. American Journal of Physiology -
Heart and Circulatory Physiology, 2012, 303, H712-H720.
$1.5 \quad 39$
11

Role of angiotensin-converting enzyme 2 and pericytes in cardiac complications of COVID-19 infection.
American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H1059-H1068.
1.5

39
115. Mechanisms of make and break excitation revisited: paradoxical break excitation during diastolic
stimulation. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H565-H575.
1.5

37

> 116 Mechanisms of shock-induced arrhythmogenesis during acute global ischemia. American Journal of
> Physiology - Heart and Circulatory Physiology, 2002, 282, H2141-H2151.
1.5

37

> Reduced response to IKr blockade and altered hERG1a/lb stoichiometry in human heart failure. Journal
> of Molecular and Cellular Cardiology, 2016, 96, 82-92.
0.9

37

118 Specialized impulse conduction pathway in the alligator heart. ELife, 2018, 7, .
$2.8 \quad 37$
119 Multiparametric Optical Mapping of the Langendorff-perfused Rabbit Heart. Journal of Visualized
Experiments, 2011, , .
$0.2 \quad 36$
$120 \quad$ Long-term culture of HL-1 cardiomyocytes in modular poly(ethylene glycol) microsphere-based
4.1

36

121 Cardioversion. Circulation, 2009, 120, 1623-1632.
1.6

35

122 Relation of the Atrial Input Sites to the Dual Atrioventricular Nodal Pathways:.. Journal of Cardiovascular Electrophysiology, 1997, 8, 1133-1144.
0.8

34
Atrioventricular conduction with and without AV nodal delay: two pathways to the bundle of His in
the rabbit heart. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293,
123 the rabbit heart. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293,
H1122-H1130.
Atria are more susceptible to electroporation than ventricles: Implications for atrial stunning, shock-induced arrhythmia and defibrillation failure. Heart Rhythm, 2008, 5, 593-604.

The mechanisms of the vulnerable window: the role of virtual electrodes and shock polarity.
Canadian Journal of Physiology and Pharmacology, 2001, 79, 25-33.
127

> Pathways to clinical CLARITY: volumetric analysis of irregular, soft, and heterogeneous tissues in development and disease. Scientific Reports, $2017,7,5899$.
1.6

33

Multifunctional Flexible Biointerfaces for Simultaneous Colocalized Optophysiology and Electrophysiology. Advanced Functional Materials, 2020, 30, 1910027.
7.8

33

131	Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography. Journal of Biomedical Optics, 2012, 17, 1.
132	Computational assessment of the functional role of sinoatrial node exit pathways in the human heart. PLoS ONE, 2017, 12, e0183727.
133	A Fully Implantable Pacemaker for the Mouse: From Battery to Wireless Power. PLoS ONE, 2013, 8, e76291.
134	Bimodal biophotonic imaging of the structure-function relationship in cardiac tissue. Journal of Biomedical Optics, 2008, 13, O54012.
132	

137 Left Septal Slow Pathway Ablation for Atrioventricular Nodal Reentrant Tachycardia. Circulation:
Arrhythmia and Electrophysiology, 2018, 11, e005907.
30
Fluorescent Imaging of a Dual-Pathway Atrioventricular-Nodal Conduction System. Circulation
Research, 2001, 88, E23-30. 2.029
Role of Pyk2 in cardiac arrhythmogenesis. American Journal of Physiology - Heart and Circulatory
139 Physiology, 2011,301, H975-H983.1.529
Flexible and Transparent Metal Nanowire Microelectrode Arrays and Interconnects for140 Electrophysiology, Optogenetics, and Optical Mapping. Advanced Materials Technologies, 2021, 6,3.029
2100225.
141 cytochalasin D. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, 1.5 28
H310-H318.142 Multiparametric slice culture platform for the investigation of human cardiac tissue physiology.1.428Progress in Biophysics and Molecular Biology, 2019, 144, 139-150.Mechanical alternans and restitution in failing SHHF rat left ventricles. American Journal of$143 \begin{aligned} & \text { Mechanical alternans and restitution in failing SHHF rat left ventricles. Am } \\ & \text { Physiology - Heart and Circulatory Physiology, 2002, 282, H1320-H1326. }\end{aligned}$$1.5 \quad 27$
145
146

$$
\begin{aligned}
& 145 \text { Molecular remodeling of ion channels, exchangers and pumps in atrial and ventricular myocytes in } \\
& \text { ischemic cardiomyopathy. Channels, 2010, 4, 101-107. }
\end{aligned}
$$

CD36 Protein Influences Myocardial Ca2+ Homeostasis and Phospholipid Metabolism. Journal of
1.6
Multistage Electrotherapy Delivered Through Chronically-Implanted Leads Terminates Atrial

149 Fibrillation With Lower Energy Than a Single Biphasic Shock. Journal of the American College of

Imaging of the Atrioventricular Node Using Optical Coherence Tomography. Journal of155 Virtual histology of the human heart using optical coherence tomography. Journal of BiomedicalOptics, 2009, 14, 054002.
23
Three-dimensional printing physiology laboratory technology. American Journal of Physiology - Heart1.523and Circulatory Physiology, 2013, 305, H1569-H1573.Transient Notch Activation Induces Long-Term Gene Expression Changes Leading to Sick Sinus2.023Syndrome in Mice. Circulation Research, 2017, 121, 549-563.
159 repolarization remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 1.5 22 303, H1426-H1434.Focal but reversible diastolic sheet dysfunction reflects regional calcium mishandling in160 dystrophicmdxmouse hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2012,1.522303, H559-H568.

161 Three Potential Mechanisms for Failure of High Intensity Focused Ultrasound Ablation in Cardiac Tissue. Circulation: Arrhythmia and Electrophysiology, 2012, 5, 409-416.
Critical Volume of Human Myocardium Necessary to Maintain Ventricular Fibrillation. Circulation:
Arrhythmia and Electrophysiology, 2018, 11, e006692.
Mechanisms of enhanced shock-induced arrhythmogenesis in the rabbit heart with healed myocardial
infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H1054-H1068.

173 | Arrhythmogenic and metabolic remodelling of failing human heart. Journal of Physiology, 2016, 594, |
| :--- |
| $3963-3980$. |

Spatial Distribution and Extent of Electroporation by Strong Internal Shock in Intact Structurally
174 Normal and Chronically Infarcted Rabbit Hearts. Journal of Cardiovascular Electrophysiology, 2008,
0.8

17 19, 1080-1089.

175 Multi-omics integration identifies key upstream regulators of pathomechanisms in hypertrophic cardiomyopathy due to truncating MYBPC3 mutations. Clinical Epigenetics, 2021, 13, 61.

Anode-break excitation during end-diastolic stimulation is explained by half-cell double layer discharge. IEEE Transactions on Biomedical Engineering, 2002, 49, 1217-1220.
2.5

16

Nonlinear effects in subthreshold virtual electrode polarization. American Journal of Physiology Heart and Circulatory Physiology, 2003, 284, H2368-H2374.
1.5

16

Optical mapping of the atrioventricular junction. Journal of Electrocardiology, 2005, 38, 121-125.

[^1]1.5

$0.7 \quad 16$

Ultrafast Volumetric Optoacoustic Imaging of Whole Isolated Beating Mouse Heart. Scientific Reports, 2018, 8, 14132.
1.6

Optical Coherence Tomography Imaging of the Purkinje Network. Journal of Cardiovascular Electrophysiology, 2005, 16, 559-560.

Right Pectoral Implantable Cardioverter Defibrillators: Role of the Proximal (SVC) Coil. PACE - Pacing and Clinical Electrophysiology, 2008, 31, 1025-1035.

Diet-induced obesity promotes altered remodeling and exacerbated cardiac hypertrophy following
pressure overload. Physiological Reports, 2015,3, e12489. pressure overload. Physiological Reports, 2015, 3, e12489.
$0.7 \quad 15$

Local transmural action potential gradients are absent in the isolated, intact dog heart but present in the corresponding coronary-perfused wedge. Physiological Reports, 2017, 5, el3251.
0.7

15

```
Transcriptional Patterning of the Ventricular Cardiac Conduction System. Circulation Research,
``` 2020, 127, e94-e106.
2.0

15

Vortices with linear cores in mathematical models of excitable media. Physica A: Statistical Mechanics and Its Applications, 1992, 188, 55-60.

Mechanism of atrioventricular nodal facilitation in rabbit heart: role of proximal AV node. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H1658-H1668.

Functional imaging of the embryonic pacemaking and cardiac conduction system over the past 150 years: Technologies to overcome the challenges. The Anatomical Record, 2004, 280A, 980-989.

191 Nanoscale three-dimensional imaging of the human myocyte. Journal of Structural Biology, 2014, 188,
55-60.

High-resolution structure-function mapping of intact hearts reveals altered sympathetic control of
192 infarct border zones. JCl Insight, 2022, 7, .
2.3

14

193 The Future of Optical Mapping is Bright. Circulation Research, 2012, 110, e70-1.
2.0

13

Fractionated electrograms with ST-segment elevation recorded from the human right ventricular outflow tract. HeartRhythm Case Reports, 2017, 3, 546-550.

ZO-1 Regulates Intercalated Disc Composition and Atrioventricular Node Conduction. Circulation Research, 2020, 127, e28-e43.
2.0

13

Authorsấ \(€^{\text {TM }}\) Reply: Unravelling the Mysteries Of The Human AV Node. Arrhythmia and Electrophysiology Review, 2018, 7, 64.
1.3

13
199

> Chessboard of atrial fibrillation: reentry or focus? Single or multiple source(s)? Neurogenic or
> myogenic?. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H977-H979.
1.5

12

Direct measurements of membrane time constant during defibrillation strength shocks. Heart Rhythm,
201 Functional roles of KATP channel subunits in metabolic inhibition. Journal of Molecular and Cellular
0.9
Cardiology, 2013, 62, 90-98.
\begin{tabular}{l|l}
\\
\hline
\end{tabular}

Imaging of Ventricular Fibrillation and Defibrillation: The Virtual Electrode Hypothesis. Advances in
0.8

12
Experimental Medicine and Biology, 2015, 859, 343-365.
\(203 \begin{aligned} & \text { Technical advances in studying cardiac electrophysiology â€ } €^{"} \text { Role of rabbit models. Progress in } \\ & \text { Biophysics and Molecular Biology, 2016, 121, 97-109. }\end{aligned}\)
1.4

204 Elastic titin properties and protein quality control in the aging heart. Biochimica Et Biophysica Acta -
Molecular Cell Research, 2020, 1867, 118532.
1.9

12
205 Drawnâ€onâ€Skin Sensors from Fully Biocompatible Inks toward Highâ€Quality Electrophysiology. Small,
2022, 18, .
\(5.2 \quad 12\)

\section*{206 Virtual Electrode Polarization of Ventricular Epicardium During Bipolar Stimulation. Journal of Cardiovascular Electrophysiology, 2000, 11, 605-605.}
0.8

11
207 Mitochondrial depolarization and electrophysiological changes during ischemia in the rabbit and
human heart. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1178-H1186.
208 Cardiac connexin genotyping for identificatior
209 Stretchable and Transparent Metal Nanowire Microelectr
0.9 11
210 Differential cardiotoxic electrocardiographic response to doxorubicin treatment in conscious0.711versus anesthetized mice. Physiological Reports, 2021, 9, el4987.
2.1 11Electrophysiology and Arrhythmogenesis in the Human Right Ventricular Outflow Tract. Circulation:Arrhythmia and Electrophysiology, 2022, 15, CIRCEP121010630.Fluorescence Imaging for Real-Time Monitoring of High-Intensity Focused Ultrasound Cardiac1.310Ablation. Annals of Biomedical Engineering, 2005, 33, 1352-1359.Membrane Time Constant During Internal Defibrillation Strength Shocks in Intact Heart: Effects of213 Na ⁺ and Ca <sup > \(2+\langle/\) sup > Channel Blockers. Journal of Cardiovascular0.810Electrophysiology, 2009, 20, 85-92.214 Optical Mapping. Cardiac Electrophysiology Clinics, 2019, 11, 495-510.

\title{
Simultaneous triple-parametric optical mapping of transmembrane potential, intracellular calcium and NADH for cardiac physiology assessment. Communications Biology, 2022, 5, 319.
}
2.0

10

Preclinical Cardiac Electrophysiology Assessment by Dual Voltage and Calcium Optical Mapping of Human Organotypic Cardiac Slices. Journal of Visualized Experiments, 2020, , .
Voltage-sensitive dye RH421 increases contractility of cardiac muscle. Canadian Journal of Physiology
and Pharmacology, 1998, 76, 1146-1150.

220 Enhanced susceptibility to alternans in a rabbit model of chronic myocardial infarction. , 2009, 2009, 4527-30.
221 Multiscale imaging of the human heart: Building the foundation for human systems physiology and translational medicine. , 2010, 2010, 5177-80. 8
222 Longitudinal Study of Cardiac Remodelling in Rabbits Following Infarction. Canadian Journal of Cardiology, 2012, 28, 230-238. \(0.8 \quad 8\)
223 Human cardiac systems electrophysiology and arrhythmogenesis: iteration of experiment and computation. Europace, 2014, 16, iv77-iv85. \(0.7 \quad 8\)
224 Advances in Implantable Optogenetic Technology for Cardiovascular Research and Medicine.Frontiers in Physiology, 2021, 12, 720190.
225 Phase I and phase II of short-term mechanical restitution in perfused rat left ventricles. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H1311-H1319.
226 Connections, connections, connexins: Towards systems biology paradigm of cardiac arrhythmia.Journal of Molecular and Cellular Cardiology, 2006, 41, 949-951.
227 Mechanisms of Fibrillation: Neurogenic or Myogenic? Reentrant or Focal? Multiple or Single?: Still 0.8 Puzzling After 160 Years of Inquiry. Journal of Cardiovascular Electrophysiology, 2010, 21, 1274-1275.7Integrative Functional Annotation of 52 Genetic Loci Influencing Myocardial Mass Identifies Candidate1.61.38
229 Optocardiography: A review of its past, present, and future. Current Opinion in Biomedical1.8Engineering, 2019, 9, 74-80.p38î́ genetic ablation protects female mice from anthracycline cardiotoxicity. American Journal of1.5Physiology - Heart and Circulatory Physiology, 2020, 319, H775-H786.The mechanisms of the vulnerable window: the role of virtual electrodes and shock polarity.0.7Canadian Journal of Physiology and Pharmacology, 2001, 79, 25-33.Effects of Lidocaine on Shockâ€łnduced Vulnerability. Journal of Cardiovascular Electrophysiology,2003, 14, S237-S248.
235 It's clearly the heart! Optical transparency, cardiac tissue imaging, and computer modelling. Progressin Biophysics and Molecular Biology, 2021, 168, 18-18.
1.4 6
Novel Low-Voltage MultiPulse Therapy to Terminate Atrial Fibrillation. JACC: Clinical Electrophysiology, 2021, 7, 988-999. 1.3
2361.8
Ventricular TLR4 Levels Abrogate TLR2-Mediated Adverse Cardiac Remodeling upon Pressure Overload in Mice. International Journal of Molecular Sciences, \(2021,22,11823\). 2370.7and Pharmacology, 1998, 76, 1146-50.The Gurvich waveform has lower defibrillation threshold than the rectilinear waveform and the239 truncated exponential waveform in the rabbit heart. Canadian Journal of Physiology and\(0.7 \quad 5\)Pharmacology, 2005, 83, 152-160.
240 Precordial thump and commotio cordis: The yin and yang of mechanoelectric feedback in the heart. 0.3 5
Heart Rhythm, 2006, 3, 187-188.\(2.5 \quad 5\)
241 A Shocking Past: A Walk Through Generations
242 Mechanisms of AV Nodal Excitability and Propagation. , 2004, , 203-212. 56
243 Diastolic Shocking Experience:. Journal of Cardiovascular Electrophysiology, 2003, 14, 1223-1224. 0.8 4
Three-dimensional anatomy of the conduction system of the early embryonic rabbit heart. The3-7.
245 Cloning, sequence analysis and phylogeny of connexin43 isolated from American black bear heart. DNASequence, 2007, 18, 380-384.
0.7 4
246 The Virtual Electrode Hypothesis of Defibrillation. , 2009, , 331-356. 4
247 Two Centuries of Resuscitation. Journal of the American College of Cardiology, 2013, 62, 2110-2111. 1.2 4Electrophysiological Changes Correlated with Temperature Increases Induced by High-IntensityFocused Ultrasound Ablation. Ultrasound in Medicine and Biology, 2015, 41, 432-448.
253 Nature Versus Nurture in Cardiac Conduction. Circulation Research, 2008, 103, 119-121. 2.0 3
254
Chronaxie of Defibrillation: A Pathway Toward Further Optimization of Defibrillation Waveform?. Journal of Cardiovascular Electrophysiology, 2009, 20, 315-317.
255 â€œFibrillating Atrium: Rabbit Warren! Not Beehive!â€: Journal of Cardiovascular Electrophysiology, 2013, 0.8
24, 336-337.\(3.9 \quad 3\)
256Sensors: Stretchable, Multiplexed pH Sensors With Demonstrations on Rabbit and Human Hearts
Undergoing Ischemia (Adv. Healthcare Mater. 1/2014). Advanced Healthcare Materials, 2014, 3, 2-2.
0.9257 Flotillins in the intercalated disc are potential modulators of cardiac excitability. Journal ofMolecular and Cellular Cardiology, 2019, 126, 86-95.Abstract 5286: Human AV Junctional Pacemaker Shift Due to Cholinergic and Adrenergic Stimulations:Optical Imaging with a Novel Long Wavelength Voltage-Sensitive Dye. Circulation, 2008, 118, .1.6
Naum Lazarevich Gurvich (1905-1981) and his contribution to the history of defibrillation. Cardiology 0.5 3
259 Journal, 2009, 16, 190-3.1.43Acetylcholine Reduces IKr and Prolongs Action Potentials in Human Ventricular Cardiomyocytes.Biomedicines, 2022, 10, 244.Hardwareâ€Mappable Cellular Neural Networks for Distributed Wavefront Detection in Nextâ€Generation
261 Cardiac Implants. Advanced Intelligent Systems, 2022, 4,3.33
Biventricular Shocking Leads Improve Defibrillation Efficacy. Journal of Cardiovascular
0.8 2
Electrophysiology, 1999, 10, 561-565. 262
Virtual Electrodes in Virtual Reality of Defibrillation. Journal of Cardiovascular Electrophysiology,
263 2002, 13, 680-681.
0.82
264 Fibrillation or Neurillation. Circulation Research, 2003, 92, 1062-1064. 2.0 2
265 OCT imaging of cardiac architecture. , 2004, , 2
266 Innovation in optical imaging: Looking inside the heart. Heart Rhythm, 2007, 4, 925-926.0.32
267 Structured light imaging of epicardial mechanics. , 2010, 2010, 5157-60. 22
defocusing., 2010, ,.Capabilities in Cardiac Electrotherapy (Adv. Mater. 10/2015). Advanced Materials, 2015, 27, 1730-1730.Microelectrode Arrays: Flexible and Transparent Metal Nanowire Microelectrode Arrays and
273 Interconnects for Electrophysiology, Optogenetics, and Optical Mapping (Adv. Mater. Technol. 7/2021).\(3.0 \quad 2\)Advanced Materials Technologies, \(2021,6,2170041\).
and Technologies, 2021, , 223-236.
279 Measuring Dynamic 3D Micro-Structures Using a Superfast Digital Binary Phase-Shifting Technique., 2013, , .1Response by Handa et al to Letter Regarding Article, â€œGranger Causalityâ€"Based Analysis for280 Classification of Fibrillation Mechanisms and Localization of Rotational Driversâ€: Circulation:
Architecture of the
\(2021,7,703-704\).
282 Molecular1
283 Basic Principles of Cardiac Electrophysiology. Contemporary Cardiology, 2020, , 3-32. 0.0 1

Tornado in a dish: Revealing the mechanisms of ventricular arrhythmias in engineered cardiac tissues. Cardiovascular Research, 2006, 69, 307-308.
```

2 8 9 Optical Mapping of Cardiac ATP Sensitive Potassium Channel Function under Metabolic Inhibition.
Biophysical Journal, 2012, 102, 339a.

Ultrathin Injectable Sensors: Ultrathin Injectable Sensors of Temperature, Thermal Conductivity, and
293 Heat Capacity for Cardiac Ablation Monitoring (Adv. Healthcare Mater. 3/2016). Advanced Healthcare
301 Overexpression of Cx43 and NF200 in the ground squirrel Citellus undulatus heart during the

```
303 A Method for Measuring 3D Cardiac Surface Mechanics with Highâ€Speed Structured Light Imaging.
FASEB Journal, 2012, 26, 864.18.

308 Organ conformal electronics for cardiac therapeutics. , 2020, , 911-937.

310 Genetic algorithm-based personalized models of human cardiac action potential. , 2020, 15, e0231695.

311 Genetic algorithm-based personalized models of human cardiac action potential. , 2020, 15, e0231695.

312 Genetic algorithm-based personalized models of human cardiac action potential. , 2020, 15, e0231695.

314 Genetic algorithm-based personalized models of human cardiac action potential. , 2020, 15, e0231695.```

[^0]: Resolution of Established Cardiac Hypertrophy and Fibrosis and Prevention of Systolic Dysfunction in
 35 a Transgenic Rabbit Model of Human Cardiomyopathy Through Thiol-Sensitive Mechanisms.
 Circulation, 2009, 119, 1398-1407.

[^1]: Mechanisms of superiority of ascending ramp waveforms: new insights into mechanisms of
 179 shock-induced vulnerability and defibrillation. American Journal of Physiology - Heart and
 Circulatory Physiology, 2005, 289, H569-H577.

