Greg I Elmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3105608/publications.pdf

Version: 2024-02-01

		109321	95266
69	8,646 citations	35	68
papers	citations	h-index	g-index
69	69	69	14972
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Controlling the false discovery rate in behavior genetics research. Behavioural Brain Research, 2001, 125, 279-284.	2.2	3,483
2	NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature, 2016, 533, 481-486.	27.8	1,246
3	Heritability of nociception I: Responses of 11 inbred mouse strains on 12 measures of nociception. Pain, 1999, 80, 67-82.	4.2	581
4	Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behavioural Brain Research, 2005, 156, 251-261.	2.2	278
5	Heritability of nociception II. †Types' of nociception revealed by genetic correlation analysis. Pain, 1999, 80, 83-93.	4.2	217
6	Reduction of Endogenous Kynurenic Acid Formation Enhances Extracellular Glutamate, Hippocampal Plasticity, and Cognitive Behavior. Neuropsychopharmacology, 2010, 35, 1734-1742.	5. 4	187
7	Fluctuations in Endogenous Kynurenic Acid Control Hippocampal Glutamate and Memory. Neuropsychopharmacology, 2011, 36, 2357-2367.	5.4	137
8	$\hat{1}$ /4 Opiate Receptor Gene Dose Effects on Different Morphine Actions Evidence for Differential in vivo $\hat{1}$ /4 Receptor Reserve. Neuropsychopharmacology, 2001, 25, 41-54.	5. 4	128
9	The Neurobiology of Opiate Reinforcement. Critical Reviews in Neurobiology, 1998, 12, 267-303.	3.1	128
10	Genetic variance in nociception and its relationship to the potency of morphine-induced analgesia in thermal and chemical tests. Pain, 1998, 75, 129-140.	4.2	124
11	New replicable anxiety-related measures of wall vs. center behavior of mice in the open field. Journal of Applied Physiology, 2004, 97, 347-359.	2.5	118
12	Opioid operant self-administration, analgesia, stimulation and respiratory depression in $\hat{l}\frac{1}{4}$ -deficient mice. Psychopharmacology, 1995, 117, 23-31.	3.1	113
13	Rats and mice share common ethologically relevant parameters of exploratory behavior. Behavioural Brain Research, 2001, 125, 133-140.	2.2	110
14	Genotype-environment interactions in mouse behavior: A way out of the problem. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4619-4624.	7.1	88
15	Hyperoxic Reperfusion after Global Cerebral Ischemia Promotes Inflammation and Long-Term Hippocampal Neuronal Death. Journal of Neurotrauma, 2010, 27, 753-762.	3.4	87
16	Pre―and postnatal exposure to kynurenine causes cognitive deficits in adulthood. European Journal of Neuroscience, 2012, 35, 1605-1612.	2.6	84
17	Failure of Intravenous Morphine to Serve as an Effective Instrumental Reinforcer in Dopamine D2 Receptor Knock-Out Mice. Journal of Neuroscience, 2002, 22, RC224-RC224.	3.6	78
18	SEE locomotor behavior test discriminates C57BL/6J and DBA/2J mouse inbred strains across laboratories and protocol conditions Behavioral Neuroscience, 2003, 117, 464-477.	1.2	71

#	Article	IF	Citations
19	Continuous kynurenine administration during the prenatal period, but not during adolescence, causes learning and memory deficits in adult rats. Psychopharmacology, 2014, 231, 2799-2809.	3.1	68
20	Cocaine-induced locomotor activity and cocaine discrimination in dopamine D2 receptor mutant mice. Psychopharmacology, 2002, 163, 54-61.	3.1	61
21	Differential concentration-response curves for oral ethanol self-administration in C57BL/6J and BALB/cJ mice. Alcohol, 1987, 4, 63-68.	1.7	59
22	Combined Application of Behavior Genetics and Microarray Analysis to Identify Regional Expression Themes and Gene-Behavior Associations. Journal of Neuroscience, 2006, 26, 5277-5287.	3.6	59
23	Habenula-Induced Inhibition of Midbrain Dopamine Neurons Is Diminished by Lesions of the Rostromedial Tegmental Nucleus. Journal of Neuroscience, 2017, 37, 217-225.	3.6	58
24	Cocaine-induced locomotor activity and cocaine discrimination in dopamine D 4 receptor mutant mice. Psychopharmacology, 2003, 170, 108-114.	3.1	54
25	Darting behavior: a quantitative movement pattern designed for discrimination and replicability in mouse locomotor behavior. Behavioural Brain Research, 2003, 142, 193-205.	2.2	52
26	Mouse strain differences in operant self-administration of ethanol. Behavior Genetics, 1987, 17, 439-451.	2.1	48
27	Phentermine and Fenfluramine: Preclinical Studies in Animal Models of Cocaine Addiction. Annals of the New York Academy of Sciences, 1998, 844, 59-74.	3.8	47
28	Oral ethanol reinforced behavior in inbred mice. Pharmacology Biochemistry and Behavior, 1986, 24, 1417-1421.	2.9	45
29	Neuroplasticity, axonal guidance and microâ€ <scp>RNA</scp> genes are associated with morphine selfâ€administration behavior. Addiction Biology, 2013, 18, 480-495.	2.6	45
30	Social memory in mice: Disruption with an NMDA antagonist and attenuation with antipsychotic drugs. Pharmacology Biochemistry and Behavior, 2009, 92, 236-242.	2.9	40
31	Orally delivered cocaine functions as a positive reinforcer in C57BL/6J mice. Pharmacology Biochemistry and Behavior, 1991, 38, 897-903.	2.9	39
32	Qualitative differences between C57BL/6J and DBA/2J mice in morphine potentiation of brain stimulation reward and intravenous self-administration. Psychopharmacology, 2010, 208, 309-321.	3.1	39
33	Inhibition of kynurenine aminotransferase II attenuates hippocampusâ€dependent memory deficit in adult rats treated prenatally with kynurenine. Hippocampus, 2019, 29, 73-77.	1.9	38
34	Fixed-ratio schedules of oral ethanol self-administration in inbred mouse strains. Psychopharmacology, 1988, 96, 431-436.	3.1	36
35	Differences in morphine reinforcement property in two inbred rat strains: associations with cortical receptors, behavioral activity, analgesia and the cataleptic effects of morphine. Psychopharmacology, 1993, 112, 183-188.	3.1	35
36	Natural segmentation of the locomotor behavior of drug-induced rats in a photobeam cage. Journal of Neuroscience Methods, 2001, 109, 111-121.	2.5	35

#	Article	IF	Citations
37	Identification of Candidate Genes and Gene Networks Specifically Associated with Analgesic Tolerance to Morphine. Journal of Neuroscience, 2009, 29, 5295-5307.	3 . 6	34
38	MicroRNAs Are Involved in the Development of Morphine-Induced Analgesic Tolerance and Regulate Functionally Relevant Changes in Serpini1. Frontiers in Molecular Neuroscience, 2016, 9, 20.	2.9	33
39	Associating quantitative behavioral traits with gene expression in the brain: searching for diamonds in the hay. Bioinformatics, 2007, 23, 2239-2246.	4.1	29
40	Zanos et al. reply. Nature, 2017, 546, E4-E5.	27.8	29
41	Antagonism of alcohol hypnosis by blockade of prostaglandin synthesis and activity: Genotype and time course effects. Pharmacology Biochemistry and Behavior, 1983, 19, 131-136.	2.9	28
42	Acute sensitivity vs. context-specific sensitization to cocaine as a function of genotype. Pharmacology Biochemistry and Behavior, 1996, 53, 623-628.	2.9	27
43	Approaches to multiplicity issues in complex research in microarray analysis. Statistica Neerlandica, 2006, 60, 414-437.	1.6	27
44	The habenula governs the attribution of incentive salience to reward predictive cues. Frontiers in Human Neuroscience, 2013, 7, 781.	2.0	26
45	Anti-relapse neurons in the infralimbic cortex of rats drive relapse-suppression by drug omission cues. Nature Communications, 2019, 10, 3934.	12.8	25
46	Differential neuroendocrine responsiveness to morphine in Lewis, Fischer 344, and ACI inbred rats. Brain Research, 2000, 858, 320-326.	2.2	24
47	Isoflurane but Not Halothane Prevents and Reverses Helpless Behavior: A Role for EEG Burst Suppression?. International Journal of Neuropsychopharmacology, 2018, 21, 777-785.	2.1	21
48	Activity density in the open field: a measure for differentiating the effect of psychostimulants. Pharmacology Biochemistry and Behavior, 2005, 80, 239-249.	2.9	20
49	Aggression modulates genetic influences on morphine analgesia as assessed using a classical mendelian cross analysis. Psychopharmacology, 1993, 111, 17-22.	3.1	19
50	Engaging Research Domain Criteria (RDoC): Neurocircuitry in Search of Meaning. Schizophrenia Bulletin, 2016, 42, 1090-1095.	4.3	18
51	The rostromedial tegmental nucleus modulates the development of stress-induced helpless behavior. Behavioural Brain Research, 2019, 359, 950-957.	2.2	18
52	A Data Mining Approach to In Vivo Classification of Psychopharmacological Drugs. Neuropsychopharmacology, 2009, 34, 607-623.	5 . 4	17
53	Cardiovascular effects of cocaine during operant cocaine self-administration. European Journal of Pharmacology, 1996, 315, 43-51.	3.5	15
54	Ketamine metabolite (2R,6R)-hydroxynorketamine reverses behavioral despair produced by adolescent trauma. Pharmacology Biochemistry and Behavior, 2020, 196, 172973.	2.9	13

#	Article	IF	CITATIONS
55	Time course of ethanol's effects on brain prostaglandins in LS and SS mice. Life Sciences, 1986, 39, 1069-1075.	4.3	12
56	Bidirectional Modulation of Cocaine Expectancy by Phasic Glutamate Fluctuations in the Nucleus Accumbens. Journal of Neuroscience, 2013, 33, 9050-9055.	3.6	12
57	Cocaine self-administration is not dependent upon mesocortical $\hat{l}\pm 1$ noradrenergic signaling. NeuroReport, 2012, 23, 325-330.	1.2	11
58	Genetic factors in conditioned tolerance to the analgesic effects of etonitazene. Pharmacology Biochemistry and Behavior, 1993, 45, 251-253.	2.9	10
59	Mining mouse behavior for patterns predicting psychiatric drug classification. Psychopharmacology, 2014, 231, 231-242.	3.1	10
60	Transgenic superoxide dismutase mice differ in opioid-induced analgesia. European Journal of Pharmacology, 1995, 283, 227-232.	3.5	9
61	Data mining in a behavioral test detects early symptoms in a model of amyotrophic lateral sclerosis Behavioral Neuroscience, 2008, 122, 777-787.	1.2	9
62	Altered spatial learning, cortical plasticity and hippocampal anatomy in a neurodevelopmental model of schizophreniaâ€related endophenotypes. European Journal of Neuroscience, 2012, 36, 2773-2781.	2.6	9
63	Drug Discovery in Psychiatric Illness: Mining for Gold. Schizophrenia Bulletin, 2009, 35, 287-292.	4.3	7
64	Operant Rate Depressant Effects of Ethanol in Mice Selectively Bred for Differential Neurosensitivity to Ethanol. Journal of Addictive Diseases, 1994, 13, 9-19.	1.3	6
65	Strain dependency of the effects of nicotine and mecamylamine in a rat model of attention. Psychopharmacology, 2016, 233, 1427-1434.	3.1	6
66	Indomethacin Posttreatment Antagonizes Ethanol-induced Sleep Time. Annals of the New York Academy of Sciences, 1989, 559, 441-443.	3.8	3
67	Evidence for positive allosteric modulation of cognitive-enhancing effects of nicotine by low-dose galantamine in rats. Pharmacology Biochemistry and Behavior, 2020, 199, 173043.	2.9	2
68	Antagonism of Ethanol by Pretreatment or Posttreatment with RO 15-4513 and Indomethacin Alone or in Combination. Alcoholism: Clinical and Experimental Research, 1995, 19, 490-495.	2.4	1
69	The Contribution of Genetic Factors in Cocaine and Other Drug Abuse. , 1998, , 289-311.		O