
Gabrielle G Gaustad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3104497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals. Joule, 2017, 1, 229-243.	24.0	937
2	A future perspective on lithium-ion battery waste flows from electric vehicles. Resources, Conservation and Recycling, 2014, 83, 63-76.	10.8	315
3	Improving aluminum recycling: A survey of sorting and impurity removal technologies. Resources, Conservation and Recycling, 2012, 58, 79-87.	10.8	256
4	Circular economy strategies for mitigating critical material supply issues. Resources, Conservation and Recycling, 2018, 135, 24-33.	10.8	191
5	Economies of scale for future lithium-ion battery recycling infrastructure. Resources, Conservation and Recycling, 2014, 83, 53-62.	10.8	189
6	Ecoâ€Efficiency Analysis of a Lithiumâ€lon Battery Waste Hierarchy Inspired by Circular Economy. Journal of Industrial Ecology, 2017, 21, 715-730.	5.5	154
7	Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation. Waste Management, 2016, 51, 204-213.	7.4	152
8	Environmental trade-offs across cascading lithium-ion battery life cycles. International Journal of Life Cycle Assessment, 2017, 22, 66-81.	4.7	124
9	Economic and environmental characterization of an evolving Li-ion battery waste stream. Journal of Environmental Management, 2014, 135, 126-134.	7.8	122
10	Perspectives on Cobalt Supply through 2030 in the Face of Changing Demand. Environmental Science & Technology, 2020, 54, 2985-2993.	10.0	116
11	Prioritizing material recovery for end-of-life printed circuit boards. Waste Management, 2012, 32, 1903-1913.	7.4	83
12	Cathode refunctionalization as a lithium ion battery recycling alternative. Journal of Power Sources, 2014, 256, 274-280.	7.8	83
13	Rare earth metals from secondary sources: Review of potential supply from waste and byproducts. Resources, Conservation and Recycling, 2021, 167, 105213.	10.8	79
14	Design for Recycling. Journal of Industrial Ecology, 2010, 14, 286-308.	5.5	78
15	Strengthening the case for recycling photovoltaics: An energy payback analysis. Applied Energy, 2014, 120, 41-48.	10.1	75
16	Challenges in assessment of clean energy supply-chains based on byproduct minerals: A case study of tellurium use in thin film photovoltaics. Applied Energy, 2014, 123, 397-414.	10.1	74
17	Identifying critical materials for photovoltaics in the US: A multi-metric approach. Applied Energy, 2014, 123, 387-396.	10.1	72
18	Recycling single-wall carbon nanotube anodes from lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 12008.	6.7	70

GABRIELLE G GAUSTAD

#	Article	IF	CITATIONS
19	Techno-economic analysis of supercritical extraction of rare earth elements from coal ash. Journal of Cleaner Production, 2018, 189, 539-551.	9.3	70
20	Closing the loop on circular economy research: From theory to practice and back again. Resources, Conservation and Recycling, 2018, 135, 1-2.	10.8	68
21	Profit and policy implications of producing biodiesel–ethanol–diesel fuel blends to specification. Applied Energy, 2013, 104, 936-944.	10.1	54
22	The effect of critical material prices on the competitiveness of clean energy technologies. Materials for Renewable and Sustainable Energy, 2019, 8, 1.	3.6	45
23	Leveraging intellectual property rights to encourage green product design and remanufacturing for sustainable waste management. Resources, Conservation and Recycling, 2015, 97, 44-54.	10.8	42
24	Toward Sustainable Material Usage: Evaluating the Importance of Market Motivated Agency in Modeling Material Flows. Environmental Science & Technology, 2011, 45, 4110-4117.	10.0	40
25	Modeling methods for managing raw material compositional uncertainty in alloy production. Resources, Conservation and Recycling, 2007, 52, 180-207.	10.8	35
26	Strength and Microscopic Investigation of Unsaturated Polyester BMC Reinforced with SMC-Recyclate. Journal of Thermoplastic Composite Materials, 2005, 18, 333-349.	4.2	31
27	Thematic exploration of sectoral and cross-cutting challenges to circular economy implementation. Clean Technologies and Environmental Policy, 2021, 23, 915-936.	4.1	31
28	Ecological foraging models as inspiration for optimized recycling systems in the circular economy. Resources, Conservation and Recycling, 2018, 135, 48-57.	10.8	27
29	Estimating direct climate impacts of end-of-life solar photovoltaic recovery. Solar Energy Materials and Solar Cells, 2016, 156, 27-36.	6.2	26
30	Ferrous and non-ferrous recycling: Challenges and potential technology solutions. Waste Management, 2019, 85, 519-528.	7.4	24
31	Estimating increasing diversity and dissipative loss of critical metals in the aluminum automotive sector. Resources, Conservation and Recycling, 2019, 150, 104382.	10.8	23
32	Increasing Secondary and Renewable Material Use: A Chance Constrained Modeling Approach To Manage Feedstock Quality Variation. Environmental Science & Technology, 2011, 45, 4118-4126.	10.0	21
33	System tradeoffs in siting a solar photovoltaic material recovery infrastructure. Journal of Environmental Management, 2015, 160, 154-166.	7.8	20
34	When consumer behavior dictates life cycle performance beyond the use phase: case study of inkjet cartridge end-of-life management. International Journal of Life Cycle Assessment, 2014, 19, 1129-1145.	4.7	18
35	Life cycle assessment of jointly produced solar energy materials: Challenges and best practices. Solar Energy Materials and Solar Cells, 2016, 156, 11-26.	6.2	14
36	Portfolio Optimization of Nanomaterial Use in Clean Energy Technologies. Environmental Science & Technology, 2018, 52, 4440-4448.	10.0	14

GABRIELLE G GAUSTAD

#	Article	IF	CITATIONS
37	A framework for firm-level critical material supply management and mitigation. Resources Policy, 2019, 60, 262-276.	9.6	14
38	Comparative Analysis of Supply Risk-Mitigation Strategies for Critical Byproduct Minerals: A Case Study of Tellurium. Environmental Science & amp; Technology, 2018, 52, 11-21.	10.0	12
39	Comparing ecotoxicity risks for nanomaterial production and release under uncertainty. Clean Technologies and Environmental Policy, 2019, 21, 229-242.	4.1	12
40	Tying product reuse into tying arrangements to achieve competitive advantage and environmental improvement. Resources, Conservation and Recycling, 2018, 135, 235-245.	10.8	10
41	Characterizing Large-Scale, Electric-Vehicle Lithium Ion Transportation Batteries for Secondary Uses in Grid Applications. Batteries, 2019, 5, 8.	4.5	10
42	Criticality Research in the Materials Community. Jom, 2014, 66, 2340-2342.	1.9	8
43	The Consequences of Electronic Waste Post-Disaster: A Case Study of Flooding in Bonn, Germany. Sustainability, 2018, 10, 4193.	3.2	8
44	Positive Material Identification (PMI) Capabilities in the Metals Secondary Industry: An Analysis of XRF and LIBS Handheld Analyzers. Minerals, Metals and Materials Series, 2019, , 1375-1380.	0.4	7
45	Creating the 2020 Tokyo Olympic Medals from Electronic Scrap: Sustainability Analysis. Jom, 2017, 69, 1539-1545.	1.9	6
46	Critical Material Applications and Intensities in Clean Energy Technologies. Clean Technologies, 2019, 1, 164-184.	4.2	6
47	Determining economically optimal household organic material management pathways. Resources, Conservation and Recycling, 2016, 108, 88-96.	10.8	5
48	Operational Strategies for Increasing Secondary Materials in Metals Production Under Uncertainty. Journal of Sustainable Metallurgy, 2017, 3, 350-361.	2.3	5
49	The Potential for XRF & LIBS Handheld Analyzers to Perform Material Characterization in Scrap Yards. Journal of Sustainable Metallurgy, 2021, 7, 732-754.	2.3	5
50	Estimating direct human health impacts of end-of-life solar recovery. , 2016, , .		3
51	Electrochemical Performance and Safety of Lithium Ion Battery Anodes Incorporating Single Wall Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2012, 1439, 157-162.	0.1	2
52	Curriculum development for the sustainability PhD program at RIT. , 2010, , .		1
53	Tracking the material, energy, and value flow for end-of-life lithium ion batteries in the US. , 2011, , .		1
54	Price volatility in PV-critical material markets: Perspectives for solar firms, consumers, and policy		1

makers. , 2015, , .

#	Article	IF	CITATIONS
55	Materials Research to Enable Clean Energy: Leverage Points for Risk Reduction in Critical Byproduct Material Supply Chains. , 2016, , 193-201.		1
56	REWAS 2013: Enabling Materials Resource Sustainability Plenary Session. Jom, 2013, 65, 984-985.	1.9	0
57	Life Cycle Assessment of III-V Precursors for Photovoltaic and Semiconductor Applications. MRS Advances, 2018, 3, 1399-1404.	0.9	0
58	Aluminum Alloys in Autobodies: Sources and Sinks. Minerals, Metals and Materials Series, 2019, , 1381-1383.	0.4	0
59	Exploring Property Based Aluminum Specifications. , 2012, , 1303-1308.		0