List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3104328/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and<br>Two-Photon-Induced Amplified Spontaneous Emission. Journal of Physical Chemistry Letters, 2015, 6,<br>5027-5033. | 2.1  | 466       |
| 2  | A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nature Sustainability, 2019, 2, 718-724.                                                                                   | 11.5 | 379       |
| 3  | 48 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication. Optics Express, 2015, 23, 23302.                                                        | 1.7  | 266       |
| 4  | 20-meter underwater wireless optical communication link with 15 Gbps data rate. Optics Express, 2016, 24, 25502.                                                                                        | 1.7  | 234       |
| 5  | High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light: Science and Applications, 2019, 8, 94.                        | 7.7  | 225       |
| 6  | Perovskite Nanocrystals as a Color Converter for Visible Light Communication. ACS Photonics, 2016, 3, 1150-1156.                                                                                        | 3.2  | 221       |
| 7  | 23 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode.<br>Optics Express, 2015, 23, 20743.                                                                   | 1.7  | 178       |
| 8  | Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting. Nano<br>Letters, 2017, 17, 1520-1528.                                                                           | 4.5  | 175       |
| 9  | Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown<br>on Large Misoriented Sapphire Substrate. Advanced Functional Materials, 2019, 29, 1905445.               | 7.8  | 128       |
| 10 | Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication. Optics<br>Express, 2015, 23, 18746.                                                                        | 1.7  | 127       |
| 11 | Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics.<br>Nanoscale, 2016, 8, 12294-12306.                                                                    | 2.8  | 127       |
| 12 | Pt/AlGaN Nanoarchitecture: Toward High Responsivity, Self-Powered Ultraviolet-Sensitive<br>Photodetection. Nano Letters, 2021, 21, 120-129.                                                             | 4.5  | 127       |
| 13 | The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites. Applied Physics Letters, 2015, 106, .                                   | 1.5  | 126       |
| 14 | A Review on Practical Considerations and Solutions in Underwater Wireless Optical Communication.<br>Journal of Lightwave Technology, 2020, 38, 421-431.                                                 | 2.7  | 126       |
| 15 | Optical constants of CH_3NH_3PbBr_3 perovskite thin films measured by spectroscopic ellipsometry.<br>Optics Express, 2016, 24, 16586.                                                                   | 1.7  | 108       |
| 16 | 2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system. Optics Express, 2015, 23, 29779.                                                      | 1.7  | 103       |
| 17 | Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic<br>Metal-Optoelectronics. Nano Letters, 2016, 16, 4616-4623.                                               | 4.5  | 101       |
| 18 | Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems. Optics Letters, 2017, 42, 2455.                                          | 1.7  | 99        |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Circulating exosomal CPNE3 as a diagnostic and prognostic biomarker for colorectal cancer. Journal of Cellular Physiology, 2019, 234, 1416-1425.                                                                                                           | 2.0 | 92        |
| 20 | Light based underwater wireless communications. Japanese Journal of Applied Physics, 2018, 57, 08PA06.                                                                                                                                                     | 0.8 | 89        |
| 21 | 4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode. Optics Express, 2015, 23, 33656.                                                                    | 1.7 | 87        |
| 22 | An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for<br>mitigating Shockley–Read–Hall recombination. Nanoscale, 2015, 7, 16658-16665.                                                                            | 2.8 | 84        |
| 23 | Facile Formation of High-Quality InGaN/GaN Quantum-Disks-in-Nanowires on Bulk-Metal Substrates for<br>High-Power Light-Emitters. Nano Letters, 2016, 16, 1056-1063.                                                                                        | 4.5 | 84        |
| 24 | Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a<br>Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications. Journal<br>of Physical Chemistry Letters, 2016, 7, 137-142. | 2.1 | 80        |
| 25 | Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations. IEEE Photonics Journal, 2017, 9, 1-9.                                                                                      | 1.0 | 79        |
| 26 | III-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications. Progress in Quantum Electronics, 2018, 61, 1-31.                                                                                                 | 3.5 | 76        |
| 27 | Deep-Ultraviolet Photodetection Using Single-Crystalline β-Ga <sub>2</sub> O <sub>3</sub> /NiO<br>Heterojunctions. ACS Applied Materials & Interfaces, 2019, 11, 35095-35104.                                                                              | 4.0 | 75        |
| 28 | High-Modulation-Efficiency, Integrated Waveguide Modulator–Laser Diode at 448 nm. ACS Photonics,<br>2016, 3, 262-268.                                                                                                                                      | 3.2 | 73        |
| 29 | Band Alignment at GaN/Single-Layer WSe <sub>2</sub> Interface. ACS Applied Materials &<br>Interfaces, 2017, 9, 9110-9117.                                                                                                                                  | 4.0 | 72        |
| 30 | Comparison of nitrogen compositions in the as-grown GaNxAs1â~'x on GaAs measured by<br>high-resolution x-ray diffraction and secondary-ion mass spectroscopy. Applied Physics Letters, 2002,<br>80, 4136-4138.                                             | 1.5 | 67        |
| 31 | Surface-Passivated AlGaN Nanowires for Enhanced Luminescence of Ultraviolet Light Emitting Diodes.<br>ACS Photonics, 2018, 5, 964-970.                                                                                                                     | 3.2 | 67        |
| 32 | Determination of band offsets at GaN/single-layer MoS2 heterojunction. Applied Physics Letters, 2016, 109, .                                                                                                                                               | 1.5 | 64        |
| 33 | Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices. Progress in Quantum Electronics, 2014, 38, 237-313.                                                                                                              | 3.5 | 62        |
| 34 | Droop-free Al <sub>x</sub> Ga <sub>1-x</sub> N/Al <sub>y</sub> Ga <sub>1-y</sub> N<br>quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates. Optics<br>Express, 2017, 25, 1381.                                        | 1.7 | 60        |
| 35 | A Review of Distributed Fiber–Optic Sensing in the Oil and Gas Industry. Journal of Lightwave Technology, 2022, 40, 1407-1431.                                                                                                                             | 2.7 | 59        |
| 36 | 32 Gigabit-per-second Visible Light Communication Link with InGaN/GaN MQW Micro-photodetector.<br>Optics Express, 2018, 26, 3037.                                                                                                                          | 1.7 | 56        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of hydrofluoric acid concentration on the evolution of photoluminescence characteristics in porous silicon nanowires prepared by Ag-assisted electroless etching method. Journal of Applied Physics, 2012, 112, .                      | 1.1 | 54        |
| 38 | High-brightness semipolar (2021Â <sup>-</sup> ) blue InGaN/GaN superluminescent diodes for droop-free solid-state<br>lighting and visible-light communications. Optics Letters, 2016, 41, 2608.                                               | 1.7 | 54        |
| 39 | 71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation. Optics Express, 2017, 25, 23267.                                                                                                                               | 1.7 | 54        |
| 40 | Graded-Index Separate Confinement Heterostructure AlGaN Nanowires: Toward Ultraviolet Laser<br>Diodes Implementation. ACS Photonics, 2018, 5, 3305-3314.                                                                                      | 3.2 | 54        |
| 41 | Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication. Optics Express, 2019, 27, 30450.                                                                    | 1.7 | 52        |
| 42 | High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth. Optics Express, 2016, 24, 20281.                                                                                                                            | 1.7 | 50        |
| 43 | Photoinduced entropy of InGaN/GaN p-i-n double-heterostructure nanowires. Applied Physics Letters, 2017, 110, .                                                                                                                               | 1.5 | 50        |
| 44 | 375-nm ultraviolet-laser based non-line-of-sight underwater optical communication. Optics Express,<br>2018, 26, 12870.                                                                                                                        | 1.7 | 50        |
| 45 | Focused-ion beam patterning of organolead trihalide perovskite for subwavelength grating nanophotonic applications. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .                               | 0.6 | 49        |
| 46 | Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In 0.33 Ga 0.67 N<br>nanorods. Nano Energy, 2017, 37, 158-167.                                                                                               | 8.2 | 49        |
| 47 | Rapid thermal annealing of GaNxAs1â                                                                                                                                                                                                           | 1.1 | 48        |
| 48 | Group-III-Nitride Superluminescent Diodes for Solid-State Lighting and High-Speed Visible Light<br>Communications. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-10.                                                    | 1.9 | 44        |
| 49 | Review of nanophotonics approaches using nanostructures and nanofabrication for III-nitrides ultraviolet-photonic devices. Journal of Nanophotonics, 2018, 12, 1.                                                                             | 0.4 | 44        |
| 50 | High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication. Optics Express, 2018, 26, 26355.                                                                                                     | 1.7 | 44        |
| 51 | On the realization of across wavy water-air-interface diffuse-line-of-sight communication based on an ultraviolet emitter. Optics Express, 2019, 27, 19635.                                                                                   | 1.7 | 42        |
| 52 | Two-step controllable electrochemical etching of tungsten scanning probe microscopy tips. Review of Scientific Instruments, 2012, 83, 063708.                                                                                                 | 0.6 | 41        |
| 53 | Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen. Journal of Materials Chemistry A, 2018, 6, 6922-6930. | 5.2 | 41        |
| 54 | Semipolar ( 20 21 Â <sup>-</sup> ) InGaN/GaN micro-photodetector for gigabit-per-second visible light communication. Applied Physics Express, 2020, 13, 014001.                                                                               | 1.1 | 39        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Analysis of CMOS Compatible Cu-Based TM-Pass Optical Polarizer. IEEE Photonics Technology Letters, 2012, 24, 724-726.                                                                                                 | 1.3 | 38        |
| 56 | Impact of N-plasma and Ga-irradiation on MoS2 layer in molecular beam epitaxy. Applied Physics Letters, 2017, 110, .                                                                                                  | 1.5 | 38        |
| 57 | Early detection of red palm weevil using distributed optical sensor. Scientific Reports, 2020, 10, 3155.                                                                                                              | 1.6 | 38        |
| 58 | III-nitride disk-in-nanowire 1.2 <i>μ</i> m monolithic diode laser on (001)silicon. Applied Physics Letters,<br>2015, 107, .                                                                                          | 1.5 | 37        |
| 59 | Enhanced Optoelectronic Performance of a Passivated Nanowireâ€Based Device: Key Information from Realâ€Space Imaging Using 4D Electron Microscopy. Small, 2016, 12, 2313-2320.                                        | 5.2 | 37        |
| 60 | On the phenomenon of large photoluminescence red shift in GaN nanoparticles. Nanoscale Research<br>Letters, 2013, 8, 342.                                                                                             | 3.1 | 36        |
| 61 | Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy. Nanoscale,<br>2017, 9, 7805-7813.                                                                                         | 2.8 | 36        |
| 62 | Free-space optical channel characterization and experimental validation in a coastal environment.<br>Optics Express, 2018, 26, 6614.                                                                                  | 1.7 | 36        |
| 63 | Normalized differential method for improving the signal-to-noise ratio of a distributed acoustic sensor. Applied Optics, 2019, 58, 4933.                                                                              | 0.9 | 35        |
| 64 | Non-line-of-sight methodology for high-speed wireless optical communication in highly turbid water.<br>Optics Communications, 2020, 461, 125264.                                                                      | 1.0 | 34        |
| 65 | Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications. , 2017, , .                                                                                                |     | 33        |
| 66 | Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of<br>group Ill–nitrides, Ill–oxides, and two-dimensional materials. Journal of Semiconductors, 2019, 40,<br>121801. | 2.0 | 33        |
| 67 | Exfoliation of Threading Dislocationâ€Free, Singleâ€Crystalline, Ultrathin Gallium Nitride<br>Nanomembranes. Advanced Functional Materials, 2014, 24, 2305-2311.                                                      | 7.8 | 32        |
| 68 | InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters. RSC Advances,<br>2017, 7, 26665-26672.                                                                                            | 1.7 | 32        |
| 69 | Survey of energy-autonomous solar cell receivers for satellite–air–ground–ocean optical wireless<br>communication. Progress in Quantum Electronics, 2020, 74, 100300.                                                 | 3.5 | 32        |
| 70 | Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light.<br>Scientific Reports, 2016, 6, 33885.                                                                               | 1.6 | 31        |
| 71 | Field Demonstrations of Wide-Beam Optical Communications Through Water–Air Interface. IEEE<br>Access, 2020, 8, 160480-160489.                                                                                         | 2.6 | 31        |
| 72 | Aqua-Fi: Delivering Internet Underwater Using Wireless Optical Networks. IEEE Communications<br>Magazine, 2020, 58, 84-89.                                                                                            | 4.9 | 31        |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Semipolar III–nitride quantum well waveguide photodetector integrated with laser diode for on-chip photonic system. Applied Physics Express, 2017, 10, 042201.                                                                                  | 1.1  | 30        |
| 74 | Type-I band alignment at MoS2/In0.15Al0.85N lattice matched heterojunction and realization of MoS2 quantum well. Applied Physics Letters, 2017, 111, .                                                                                          | 1.5  | 30        |
| 75 | Impact of Turbulent-Flow-Induced Scintillation on Deep-Ocean Wireless Optical Communication.<br>Journal of Lightwave Technology, 2019, 37, 5083-5090.                                                                                           | 2.7  | 29        |
| 76 | Gbit/s ultraviolet-C diffuse-line-of-sight communication based on probabilistically shaped DMT and diversity reception. Optics Express, 2020, 28, 9111.                                                                                         | 1.7  | 29        |
| 77 | Chirped InAs/InP quantum-dash laser with enhanced broad spectrum of stimulated emission. Applied Physics Letters, 2013, 102, 091102.                                                                                                            | 1.5  | 28        |
| 78 | Dual-wavelength luminescent fibers receiver for wide field-of-view, Gb/s underwater optical wireless communication. Optics Express, 2021, 29, 38014.                                                                                            | 1.7  | 28        |
| 79 | Determination of nitrogen composition in GaNxAs1â^'x epilayer on GaAs. Journal of Crystal Growth, 2004, 268, 470-474.                                                                                                                           | 0.7  | 27        |
| 80 | Real‣pace Visualization of Energy Loss and Carrier Diffusion in a Semiconductor Nanowire Array<br>Using 4D Electron Microscopy. Advanced Materials, 2016, 28, 5106-5111.                                                                        | 11.1 | 27        |
| 81 | Highly uniform ultraviolet-A quantum-confined AlGaN nanowire LEDs on metal/silicon with a TaN<br>interlayer. Optical Materials Express, 2017, 7, 4214.                                                                                          | 1.6  | 27        |
| 82 | Tapering-induced enhancement of light extraction efficiency of nanowire deep ultraviolet LED by theoretical simulations. Photonics Research, 2018, 6, 457.                                                                                      | 3.4  | 27        |
| 83 | Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells. Optics Express, 2019, 27, 34542.                                                                                                    | 1.7  | 27        |
| 84 | A Simple FDTD Algorithm for Simulating EM-Wave Propagation in General Dispersive Anisotropic<br>Material. IEEE Transactions on Antennas and Propagation, 2013, 61, 1321-1326.                                                                   | 3.1  | 26        |
| 85 | Improved solar hydrogen production by engineered doping of InGaN/GaN axial heterojunctions. Optics<br>Express, 2019, 27, A81.                                                                                                                   | 1.7  | 26        |
| 86 | 480-nm distributed-feedback InGaN laser diode for 10.5-Gbit/s visible-light communication. Optics<br>Letters, 2020, 45, 742.                                                                                                                    | 1.7  | 26        |
| 87 | Photoluminescence characteristics of GaInNAs quantum wells annealed at high temperature. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 964. | 1.6  | 25        |
| 88 | True Yellow Light-Emitting Diodes as Phosphor for Tunable Color-Rendering Index Laser-Based White<br>Light. ACS Photonics, 2016, 3, 2089-2095.                                                                                                  | 3.2  | 25        |
| 89 | Investigation of Self-Injection Locked Visible Laser Diodes for High Bit-Rate Visible Light<br>Communication. IEEE Photonics Journal, 2018, 10, 1-11.                                                                                           | 1.0  | 25        |
| 90 | Enhanced photoelectrochemical performance of InGaN-based nanowire photoanodes by optimizing the ionized dopant concentration. Journal of Applied Physics, 2018, 124, .                                                                          | 1.1  | 25        |

| #   | Article                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Near-Infrared OAM Communication Using 3D-Printed Microscale Spiral Phase Plates. IEEE<br>Communications Magazine, 2019, 57, 65-69.                                                         | 4.9 | 25        |
| 92  | Towards Detecting Red Palm Weevil Using Machine Learning and Fiber Optic Distributed Acoustic Sensing. Sensors, 2021, 21, 1592.                                                            | 2.1 | 25        |
| 93  | Room temperature strong coupling effects from single ZnO nanowire microcavity. Optics Express, 2012, 20, 11830.                                                                            | 1.7 | 24        |
| 94  | Iridocytes Mediate Photonic Cooperation Between Giant Clams (Tridacninae) and Their Photosynthetic<br>Symbionts. Frontiers in Marine Science, 2020, 7, .                                   | 1.2 | 24        |
| 95  | Unleashing the potential of molecular beam epitaxy grown AlGaN-based ultraviolet-spectrum nanowires devices. Journal of Nanophotonics, 2018, 12, 1.                                        | 0.4 | 24        |
| 96  | Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter. Optics Letters, 2017, 42, 3618.                                                                         | 1.7 | 23        |
| 97  | Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications.<br>Optics Express, 2018, 26, A219.                                                    | 1.7 | 23        |
| 98  | Nanoporous GaN/ <i>n-</i> type GaN: A Cathode Structure for ITO-Free Perovskite Solar Cells. ACS<br>Energy Letters, 2020, 5, 3295-3303.                                                    | 8.8 | 23        |
| 99  | Wide-field-of-view optical detectors using fused fiber-optic tapers. Optics Letters, 2021, 46, 1916.                                                                                       | 1.7 | 23        |
| 100 | Metal–Organic Frameworks in Mixed-Matrix Membranes for High-Speed Visible-Light Communication.<br>Journal of the American Chemical Society, 2022, 144, 6813-6820.                          | 6.6 | 23        |
| 101 | Investigation of Chirped InAs/InGaAlAs/InP Quantum Dash Lasers as Broadband Emitters. IEEE Journal of<br>Quantum Electronics, 2014, 50, 51-61.                                             | 1.0 | 22        |
| 102 | Achieving Uniform Carrier Distribution in MBE-Grown Compositionally Graded InGaN<br>Multiple-Quantum-Well LEDs. IEEE Photonics Journal, 2015, 7, 1-9.                                      | 1.0 | 22        |
| 103 | Compact scintillating-fiber/450-nm-laser transceiver for full-duplex underwater wireless optical communication system under turbulence. Optics Express, 2022, 30, 53.                      | 1.7 | 22        |
| 104 | The effect of turbulence on NLOS underwater wireless optical communication channels [Invited].<br>Chinese Optics Letters, 2019, 17, 100013.                                                | 1.3 | 21        |
| 105 | Carbon nanotube-graphene composite film as transparent conductive electrode for GaN-based<br>light-emitting diodes. Applied Physics Letters, 2016, 109, .                                  | 1.5 | 20        |
| 106 | Ultrabroad linewidth orange-emitting nanowires LED for high CRI laser-based white lighting and gigahertz communications. Optics Express, 2016, 24, 19228.                                  | 1.7 | 20        |
| 107 | Role of quantum-confined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN<br>multi-quantum disk amber light emitting diodes. Journal of Applied Physics, 2018, 123, . | 1.1 | 20        |
| 108 | Narrow-line InGaN/GaN green laser diode with high-order distributed-feedback surface grating.<br>Applied Physics Express, 2019, 12, 042007.                                                | 1.1 | 20        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | AquaE-lite Hybrid-Solar-Cell Receiver-Modality for Energy-Autonomous Terrestrial and Underwater<br>Internet-of-Things. IEEE Photonics Journal, 2020, 12, 1-13.                                        | 1.0 | 20        |
| 110 | Group-III-nitride and halide-perovskite semiconductor gain media for amplified spontaneous emission and lasing applications. Journal Physics D: Applied Physics, 2021, 54, 143001.                    | 1.3 | 20        |
| 111 | Real-Time Optical-Wireless Video Surveillance System for High Visual-Fidelity Underwater Monitoring.<br>IEEE Photonics Journal, 2022, 14, 1-9.                                                        | 1.0 | 20        |
| 112 | Nanomembraneâ€Based, Thermalâ€Transport Biosensor for Living Cells. Small, 2017, 13, 1603080.                                                                                                         | 5.2 | 19        |
| 113 | All-inorganic halide-perovskite polymer-fiber-photodetector for high-speed optical wireless communication. Optics Express, 2022, 30, 9823.                                                            | 1.7 | 19        |
| 114 | Observation of piezotronic and piezo-phototronic effects in n-InGaN nanowires/Ti grown by molecular beam epitaxy. Nano Energy, 2018, 54, 264-271.                                                     | 8.2 | 18        |
| 115 | Demonstration of a low-complexity memory-polynomial-aided neural network equalizer for CAP visible-light communication with superluminescent diode. Opto-Electronic Advances, 2020, 3, 200009-200009. | 6.4 | 18        |
| 116 | Visible light communication using DC-biased optical filter bank multi-carrier modulation. , 2018, , .                                                                                                 |     | 17        |
| 117 | Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters.<br>Nanoscale, 2018, 10, 15980-15988.                                                                      | 2.8 | 17        |
| 118 | Direct Growth of III-Nitride Nanowire-Based Yellow Light-Emitting Diode on Amorphous Quartz Using<br>Thin Ti Interlayer. Nanoscale Research Letters, 2018, 13, 41.                                    | 3.1 | 17        |
| 119 | Simultaneous Distributed Acoustic and Temperature Sensing Using a Multimode Fiber. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-7.                                             | 1.9 | 17        |
| 120 | Toward Large-Scale Ga <sub>2</sub> O <sub>3</sub> Membranes via Quasi-Van Der Waals Epitaxy on<br>Epitaxial Graphene Layers. ACS Applied Materials & Interfaces, 2021, 13, 13410-13418.               | 4.0 | 17        |
| 121 | Tunable self-injection locked green laser diode. Optics Letters, 2018, 43, 4931.                                                                                                                      | 1.7 | 16        |
| 122 | Twofold Porosity and Surface Functionalization Effect on Pt–Porous GaN for High-Performance<br>H <sub>2</sub> -Gas Sensors at Room Temperature. ACS Omega, 2019, 4, 1678-1684.                        | 1.6 | 16        |
| 123 | A Review of Using Few-Mode Fibers for Optical Sensing. IEEE Access, 2020, 8, 179592-179605.                                                                                                           | 2.6 | 16        |
| 124 | Laser-based visible light communications and underwater wireless optical communications: a device perspective. , 2019, , .                                                                            |     | 16        |
| 125 | Molecular beam epitaxial growth of GaAs1â^'XNX with dispersive nitrogen source. Journal of Crystal<br>Growth, 2002, 242, 87-94.                                                                       | 0.7 | 15        |
| 126 | The role of nitrogen-nitrogen pairs in the deviation of the GaAsN lattice parameter from Vegard's law.<br>Journal of Applied Physics, 2004, 96, 2010-2014.                                            | 1.1 | 15        |

| #   | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Enabling area-selective potential-energy engineering in InGaN/GaN quantum wells by post-growth intermixing. Optics Express, 2015, 23, 7991.                                                                                                                                     | 1.7 | 15        |
| 128 | Enhancing the Light-Extraction Efficiency of an AlGaN Nanowire Ultraviolet Light-Emitting Diode by<br>Using Nitride/Air Distributed Bragg Reflector Nanogratings. IEEE Photonics Journal, 2017, 9, 1-8.                                                                         | 1.0 | 15        |
| 129 | Imaging Localized Energy States in Silicon-Doped InGaN Nanowires Using 4D Electron Microscopy. ACS<br>Energy Letters, 2018, 3, 476-481.                                                                                                                                         | 8.8 | 15        |
| 130 | Titanium Carbide MXene Nucleation Layer for Epitaxial Growth of High-Quality GaN Nanowires on Amorphous Substrates. ACS Nano, 2020, 14, 2202-2211.                                                                                                                              | 7.3 | 15        |
| 131 | Photoluminescence characterization of GalnNAs/GaAs quantum well carrier dynamics. Journal of Applied Physics, 2003, 94, 3110-3114.                                                                                                                                              | 1.1 | 14        |
| 132 | High responsivity GaNAsSb p-i-n photodetectors at 13µm grown by radio-frequency nitrogen<br>plasma-assisted molecular beam epitaxy. Optics Express, 2008, 16, 7720.                                                                                                             | 1.7 | 14        |
| 133 | Modeling the lasing spectra of InAs/InP Quantum dash lasers. Applied Physics Letters, 2011, 98, 101105.                                                                                                                                                                         | 1.5 | 14        |
| 134 | First demonstration of InGaP/InAlGaP based orange laser emitting at 608Ânm. Electronics Letters, 2015,<br>51, 1102-1104.                                                                                                                                                        | 0.5 | 14        |
| 135 | Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1-xN nanowires grown<br>by plasma assisted molecular beam epitaxy. Journal of Applied Physics, 2016, 120, .                                                                                         | 1.1 | 14        |
| 136 | Anomalous photoluminescence thermal quenching of sandwiched single layer MoS_2. Optical Materials Express, 2017, 7, 3697.                                                                                                                                                       | 1.6 | 14        |
| 137 | Single-Crystalline All-Oxide α–γ–β Heterostructures for Deep-Ultraviolet Photodetection. ACS Applied<br>Materials & Interfaces, 2020, 12, 53932-53941.                                                                                                                          | 4.0 | 14        |
| 138 | Photoluminescence quenching mechanisms in GaInNAs/GaAs quantum well grown by solid source<br>molecular beam epitaxy. Journal of Vacuum Science & Technology an Official Journal of the American<br>Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 2324. | 1.6 | 13        |
| 139 | Thermally induced diffusion in GalnNAsâ^•GaAs and GalnAsâ^•GaAs quantum wells grown by solid source<br>molecular beam epitaxy. Journal of Applied Physics, 2005, 97, 013506.                                                                                                    | 1.1 | 13        |
| 140 | Electron irradiation induced reduction of the permittivity in chalcogenide glass (As2S3) thin film.<br>Journal of Applied Physics, 2013, 113, 044116.                                                                                                                           | 1.1 | 13        |
| 141 | On the optical and microstrain analysis of graded InGaN/GaN MQWs based on plasma assisted molecular beam epitaxy. Optical Materials Express, 2016, 6, 2052.                                                                                                                     | 1.6 | 13        |
| 142 | Going beyond 10-meter, Gbit/s underwater optical wireless communication links based on visible<br>lasers. , 2017, , .                                                                                                                                                           |     | 13        |
| 143 | Scintillations of RGB laser beams in weak temperature and salinity-induced oceanic turbulence. , 2018, ,                                                                                                                                                                        |     | 13        |
| 144 | Flexible InGaN nanowire membranes for enhanced solar water splitting. Optics Express, 2018, 26, A640.                                                                                                                                                                           | 1.7 | 13        |

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Investigating the Performance of a Few-Mode Fiber for Distributed Acoustic Sensing. IEEE Photonics<br>Journal, 2019, 11, 1-10.                                                                                                                     | 1.0 | 13        |
| 146 | Study of surface microstructure origin and evolution for GaAs grown on<br>Ge/Si <sub>1â^'<i>x</i></sub> Ge <sub><i>x</i></sub> /Si substrate. Journal Physics D: Applied Physics,<br>2009, 42, 035303.                                             | 1.3 | 12        |
| 147 | Large bandgap blueshifts in the InGaP/InAlGaP laser structure using novel strain-induced quantum well intermixing. Journal of Applied Physics, 2016, 119, .                                                                                        | 1.1 | 12        |
| 148 | Thermodynamic photoinduced disorder in AlGaN nanowires. AIP Advances, 2017, 7, .                                                                                                                                                                   | 0.6 | 12        |
| 149 | High Reflectivity YDH/SiO2 Distributed Bragg Reflector for UV-C Wavelength Regime. IEEE Photonics<br>Journal, 2018, 10, 1-8.                                                                                                                       | 1.0 | 12        |
| 150 | Optical Properties and First-Principles Study of CH <sub>3</sub> NH <sub>3</sub> PbBr <sub>3</sub><br>Perovskite Structures. ACS Omega, 2020, 5, 12313-12319.                                                                                      | 1.6 | 12        |
| 151 | Wireless optical transmission of 450 nm, 3.2 Gbit/s 16-QAM-OFDM signals over 6.6 m underwater channel. , 2016, , .                                                                                                                                 |     | 11        |
| 152 | Diode junction temperature in ultraviolet AlGaN quantum-disks-in-nanowires. Journal of Applied<br>Physics, 2018, 124, 015702.                                                                                                                      | 1.1 | 11        |
| 153 | Underwater wireless optical communications: Opportunity, challenges and future prospects<br>commentary on "Recent progress in and perspectives of underwater wireless optical communication―<br>Progress in Quantum Electronics, 2020, 73, 100275. | 3.5 | 11        |
| 154 | Diffused-Line-of-Sight Communication for Mobile and Fixed Underwater Nodes. IEEE Photonics<br>Journal, 2020, 12, 1-13.                                                                                                                             | 1.0 | 11        |
| 155 | 7.4-Gbit/s Visible-Light Communication Utilizing Wavelength-Selective Semipolar Micro-Photodetector.<br>IEEE Photonics Technology Letters, 2020, , 1-1.                                                                                            | 1.3 | 11        |
| 156 | 2.4-Gbps Ultraviolet-C Solar-Blind Communication Based on Probabilistically Shaped DMT Modulation. , 2020, , .                                                                                                                                     |     | 11        |
| 157 | Enhanced electro-optic performance of surface-treated nanowires: origin and mechanism of nanoscale current injection for reliable ultraviolet light-emitting diodes. Optical Materials Express, 2019, 9, 203.                                      | 1.6 | 11        |
| 158 | The Impact of Vertical Salinity Gradient on Non-Line-of-Sight Underwater Optical Wireless Communication. IEEE Photonics Journal, 2021, 13, 1-9.                                                                                                    | 1.0 | 11        |
| 159 | Analysis and optimization of the annealing mechanisms in (In)GaAsN on GaAs. Semiconductor Science and Technology, 2006, 21, 808-812.                                                                                                               | 1.0 | 10        |
| 160 | Effect of the number of stacking layers on the characteristics of quantum-dash lasers. Optics Express, 2011, 19, 13378.                                                                                                                            | 1.7 | 10        |
| 161 | Spectral Analysis of Quantum-Dash Lasers: Effect of Inhomogeneous Broadening of the Active-Gain Region. IEEE Journal of Quantum Electronics, 2012, 48, 608-615.                                                                                    | 1.0 | 10        |
| 162 | Simultaneous quantum dash-well emission in a chirped dash-in-well superluminescent diode with spectral bandwidth >700Ânm. Optics Letters, 2013, 38, 3720.                                                                                          | 1.7 | 10        |

| #   | Article                                                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | High-Power and High-Efficiency 1.3- <named-content content-type="math" xlink:type="simple"><br/><inline-formula> <tex-math notation="TeX">\$muhbox{m}<br/>\$</tex-math></inline-formula></named-content> Superluminescent Diode With Flat-Top and Ultrawide<br>Emission Bandwidth. IEEE Photonics Journal, 2015, 7, 1-8. | 1.0 | 10        |
| 164 | Analysis of optical injection on red and blue laser diodes for high bit-rate visible light communication. Optics Communications, 2019, 449, 79-85.                                                                                                                                                                       | 1.0 | 10        |
| 165 | Heteroepitaxial βâ€Ga <sub>2</sub> O <sub>3</sub> on Conductive Ceramic Templates: Toward Ultrahigh<br>Gain Deepâ€Ultraviolet Photodetection. Advanced Materials Technologies, 2021, 6, 2100142.                                                                                                                         | 3.0 | 10        |
| 166 | Sustained Solar-Powered Electrocatalytic H <sub>2</sub> Production by Seawater Splitting Using<br>Two-Dimensional Vanadium Disulfide. ACS Sustainable Chemistry and Engineering, 2021, 9, 8572-8580.                                                                                                                     | 3.2 | 10        |
| 167 | Effect of In and N incorporation on the properties of lattice-matched GaInNAs/GaAs grown by radio frequency plasma-assisted solid-source molecular beam epitaxy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena. 2002. 20. 2091. | 1.6 | 9         |
| 168 | Bandwidth enhancement of wireless optical communication link using a near-infrared laser over turbid underwater channel. , 2017, , .                                                                                                                                                                                     |     | 9         |
| 169 | On the Reciprocity of Underwater Turbulent Channels. IEEE Photonics Journal, 2019, 11, 1-9.                                                                                                                                                                                                                              | 1.0 | 9         |
| 170 | InGaN-based nanowires development for energy harvesting and conversion applications. Journal of Applied Physics, 2021, 129, .                                                                                                                                                                                            | 1.1 | 9         |
| 171 | Effective antireflection properties of porous silicon nanowires for photovoltaic applications. , 2013, , .                                                                                                                                                                                                               |     | 8         |
| 172 | Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts. Proceedings of SPIE, 2016, , .                                                                                                                                                             | 0.8 | 8         |
| 173 | Ultraviolet-A LED Based on Quantum-Disks-In-AlGaN-Nanowires—Optimization and Device Reliability.<br>IEEE Photonics Journal, 2018, 10, 1-11.                                                                                                                                                                              | 1.0 | 8         |
| 174 | Tunable Violet Laser Diode System for Optical Wireless Communication. IEEE Photonics Technology<br>Letters, 2020, 32, 546-549.                                                                                                                                                                                           | 1.3 | 8         |
| 175 | Improved H2 detection performance of GaN sensor with Pt/Sulfide treatment of porous active layer prepared by metal electroless etching. International Journal of Hydrogen Energy, 2021, 46, 4614-4625.                                                                                                                   | 3.8 | 8         |
| 176 | Toward Automatic Subsea Operations Using Real-Time Underwater Optical Wireless Sensor Networks.<br>IEEE Photonics Journal, 2022, 14, 1-8.                                                                                                                                                                                | 1.0 | 8         |
| 177 | Chlorine-Infused Wide-Band Gap p-CuSCN/n-GaN Heterojunction Ultraviolet-Light Photodetectors. ACS<br>Applied Materials & Interfaces, 2022, 14, 17889-17898.                                                                                                                                                              | 4.0 | 8         |
| 178 | The Influence of Emitter Material on Silicon Nitride Passivation-Induced Degradation in InP-Based HBTs. IEEE Transactions on Electron Devices, 2004, 51, 8-13.                                                                                                                                                           | 1.6 | 7         |
| 179 | GaNAsSb/GaAs waveguide photodetector with response up to 1.6â€,μm grown by molecular beam epitaxy.<br>Applied Physics Letters, 2008, 93, 081102.                                                                                                                                                                         | 1.5 | 7         |
| 180 | 14-GHz GaNAsSb Unitraveling-Carrier 1.3-\$muhbox{m}\$ Photodetectors Grown by RF Plasma-Assisted Nitrogen Molecular Beam Epitaxy. IEEE Electron Device Letters, 2009, 30, 590-592.                                                                                                                                       | 2.2 | 7         |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Synthesis of In0.1Ga0.9N/GaN structures grown by MOCVD and MBE for high speed optoelectronics.<br>MRS Advances, 2016, 1, 1735-1742.                                                                                                                               | 0.5 | 7         |
| 182 | Worst-case residual clipping noise power model for bit loading in LACO-OFDM. , 2018, , .                                                                                                                                                                          |     | 7         |
| 183 | Single and Multiple Longitudinal Wavelength Generation in Green Diode Lasers. IEEE Journal of<br>Selected Topics in Quantum Electronics, 2019, 25, 1-7.                                                                                                           | 1.9 | 7         |
| 184 | Optical properties of freestanding GaN nanomembranes using monochromated valence-EELS. Materials<br>Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 272, 115333.                                                                  | 1.7 | 7         |
| 185 | 3.8-Gbit/s visible light communication (VLC) based on 443-nm superluminescent diode and bit-loading discrete-multiple-tone (DMT) modulation scheme. , 2020, , .                                                                                                   |     | 7         |
| 186 | GHz modulation bandwidth from single-longitudinal mode violet-blue VCSEL using nonpolar<br>InGaN/GaN QWs. , 2016, , .                                                                                                                                             |     | 7         |
| 187 | Influences of ALD Al <sub>2</sub> O <sub>3</sub> on the surface band-bending of c-plane, Ga-face GaN.<br>Japanese Journal of Applied Physics, 2022, 61, 011003.                                                                                                   | 0.8 | 7         |
| 188 | Two-Dimensional Hybrid Organic-Inorganic Perovskite Nanosheets for Gb/s Visible-Light<br>Communication. IEEE Photonics Technology Letters, 2022, 34, 753-756.                                                                                                     | 1.3 | 7         |
| 189 | InGaN micro-LED-pillar as the building block for high brightness emitters. , 2013, , .                                                                                                                                                                            |     | 6         |
| 190 | Distinct Lasing Operation From Chirped InAs/InP Quantum-Dash Laser. IEEE Photonics Journal, 2013, 5, 1501308-1501308.                                                                                                                                             | 1.0 | 6         |
| 191 | Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications. Proceedings of SPIE, 2017, , .                                                                                                                           | 0.8 | 6         |
| 192 | Underwater wireless optical communications: From system-level demonstrations to channel modelling. , 2017, , .                                                                                                                                                    |     | 6         |
| 193 | Spectrally Resolved Characterization of Thermally Induced Underwater Turbulence Using a Broadband White-Light Interrogator. IEEE Photonics Journal, 2019, 11, 1-9.                                                                                                | 1.0 | 6         |
| 194 | Blue Laser Diode System With an Enhanced Wavelength Tuning Range. IEEE Photonics Journal, 2020, 12,<br>1-10.                                                                                                                                                      | 1.0 | 6         |
| 195 | THz behavior originates from different arrangements of coalescent GaN nanorods grown on Si (111)<br>and Si (100) substrates. Applied Surface Science, 2020, 522, 146422.                                                                                          | 3.1 | 6         |
| 196 | Charging suppression in focused-ion beam fabrication of visible subwavelength dielectric grating<br>reflector using electron conducting polymer. Journal of Vacuum Science and Technology<br>B:Nanotechnology and Microelectronics, 2015, 33, .                   | 0.6 | 6         |
| 197 | Boosted ultraviolet photodetection of AlGaN quantum-disk nanowires via rational surface passivation. Journal Physics D: Applied Physics, 2022, 55, 125101.                                                                                                        | 1.3 | 6         |
| 198 | Improved GaN[sub x]As[sub 1â^'x] quality grown by molecular beam epitaxy with dispersive nitrogen source. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 1364. | 1.6 | 5         |

| #   | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | 1.55ĥ¼m GaAsâ^•GaNAsSbâ^•GaAs optical waveguides grown by radio frequency nitrogen plasma-assisted<br>molecular beam epitaxy. Applied Physics Letters, 2008, 92, 113513.                                                                                                 | 1.5 | 5         |
| 200 | Molecular beam epitaxy growth of bulk GaNAsSb on Ge/graded-SiGe/Si substrate. Journal of Crystal<br>Growth, 2009, 311, 1754-1757.                                                                                                                                        | 0.7 | 5         |
| 201 | Thermal Annealing induced relaxation of compressive strain in porous GaN structures. , 2012, , .                                                                                                                                                                         |     | 5         |
| 202 | A possible approach on optical analogues of gravitational attractors. Optics Express, 2013, 21, 8298.                                                                                                                                                                    | 1.7 | 5         |
| 203 | Enhancing Carrier Injection Using Graded Superlattice Electron Blocking Layer for UVB Light-Emitting<br>Diodes. IEEE Photonics Journal, 2014, 6, 1-12.                                                                                                                   | 1.0 | 5         |
| 204 | High-Performance 1.55- <inline-formula> <tex-math notation="TeX">\$muhbox{m}\$</tex-math><br/></inline-formula> Superluminescent Diode Based on Broad Gain InAs/InGaAlAs/InP Quantum Dash<br>Active Region. IEEE Photonics Journal, 2014, 6, 1-8.                        | 1.0 | 5         |
| 205 | First demonstration of orange-yellow light emitter devices in InGaP/InAlGaP laser structure using strain-induced quantum well intermixing technique. , 2016, , .                                                                                                         |     | 5         |
| 206 | Direct Growth of Single Crystalline GaN Nanowires on Indium Tin Oxide-Coated Silica. Nanoscale<br>Research Letters, 2019, 14, 45.                                                                                                                                        | 3.1 | 5         |
| 207 | Near-Infrared Wireless Optical Communication with Particulates In-Suspension over the Underwater Channel. , 2017, , .                                                                                                                                                    |     | 5         |
| 208 | Origin and suppression of V-shaped defects in the capping of self-assembled InAs quantum dots on graded Silâ^'xGex/Si substrate. Applied Physics Letters, 2009, 95, 052111.                                                                                              | 1.5 | 4         |
| 209 | 1.3-\$mu\$m GaNAsSb–GaAs UTC-Photodetectors for 10-Gigabit Ethernet Links. IEEE Photonics<br>Technology Letters, 2009, 21, 911-913.                                                                                                                                      | 1.3 | 4         |
| 210 | Generation of J_0-Bessel-Gauss beam by a heterogeneous refractive index map. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 1252.                                                                                          | 0.8 | 4         |
| 211 | High gain semiconductor optical amplifier $\hat{a} \in$ "Laser diode at visible wavelength. , 2016, , .                                                                                                                                                                  |     | 4         |
| 212 | Time–Energy Quantum Uncertainty: Quantifying the Effectiveness of Surface Defect Passivation<br>Protocols for Low-Dimensional Semiconductors. ACS Applied Electronic Materials, 2020, 2, 409-418.                                                                        | 2.0 | 4         |
| 213 | Characterization of epitaxial titanium nitride mediated single-crystal nickel oxide grown on MgO-(100) and Si-(100). AlP Advances, 2020, 10, 065318.                                                                                                                     | 0.6 | 4         |
| 214 | Quantifying the Transverse-Electric-Dominant 260 nm Emission from Molecular Beam Epitaxy-Grown<br>GaN-Quantum-Disks Embedded in AlN Nanowires: A Comprehensive Optical and Morphological<br>Characterization. ACS Applied Materials & Interfaces, 2020, 12, 41649-41658. | 4.0 | 4         |
| 215 | Piezotronic AlGaN nanowire Schottky junctions grown on a metal substrate. AlP Advances, 2020, 10, .                                                                                                                                                                      | 0.6 | 4         |
| 216 | Colloidal PbS Quantum Dots for Visible-to-Near-Infrared Optical Internet of Things. IEEE Photonics<br>Journal, 2021, 13, 1-11.                                                                                                                                           | 1.0 | 4         |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Towards Early Detection of Red Palm Weevil Using Optical Fiber Distributed Acoustic Sensor. , 2019, , .                                                                                                                                                          |     | 4         |
| 218 | A tutorial on laser-based lighting and visible light communications: device and technology [Invited].<br>Chinese Optics Letters, 2019, 17, 040601.                                                                                                               | 1.3 | 4         |
| 219 | Sensing within the OTDR dead-zone using a two-mode fiber. Optics Letters, 2020, 45, 2969.                                                                                                                                                                        | 1.7 | 4         |
| 220 | Silicon-integrated monocrystalline oxide–nitride heterostructures for deep-ultraviolet<br>optoelectronics. Optical Materials Express, 2021, 11, 4130.                                                                                                            | 1.6 | 4         |
| 221 | Anomalous temperature-dependent photoluminescence characteristic of as-grown GalnNAs/GaAs<br>quantum well grown by solid source molecular beam epitaxy. Journal of Crystal Growth, 2004, 270,<br>351-358.                                                        | 0.7 | 3         |
| 222 | Enhancement of Hole Confinement by Monolayer Insertion in Asymmetric Quantum-Barrier UVB Light<br>Emitting Diodes. IEEE Photonics Journal, 2014, 6, 1-9.                                                                                                         | 1.0 | 3         |
| 223 | On the impact of indium distribution on the electronic properties in InGaN nanodisks. Applied Physics<br>Letters, 2015, 106, 101910.                                                                                                                             | 1.5 | 3         |
| 224 | InAs/GaAs quantum-dot intermixing: comparison of various dielectric encapsulants. Optical<br>Engineering, 2015, 54, 107107.                                                                                                                                      | 0.5 | 3         |
| 225 | Effect of annealing InGaP/InAlGaP laser structure at 950°C on laser characteristics. Journal of Nanophotonics, 2016, 10, 036004.                                                                                                                                 | 0.4 | 3         |
| 226 | Health-friendly high-quality white light using violet-green-red laser and InGaN nanowires-based true yellow nanowires light-emitting diodes. , 2017, , .                                                                                                         |     | 3         |
| 227 | Spatially resolved investigation of competing nanocluster emission in quantum-disks-in-nanowires structure characterized by nanoscale cathodoluminescence. Journal of Nanophotonics, 2017, 11, 026015.                                                           | 0.4 | 3         |
| 228 | Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations. , 2017, , .                                                                                                                      |     | 3         |
| 229 | Functional integrity and stable high-temperature operation of planarized ultraviolet-A<br>AlxGa1â°'xN/AlyGa1â°'yN multiple-quantum-disk nanowire LEDs with charge-conduction promoting<br>interlayer. , 2019, , .                                                |     | 3         |
| 230 | Electrical characterization of solar-blind deep-ultraviolet (Al0.28Ga0.72)2O3 Schottky photodetectors grown on silicon by pulsed laser deposition. , 2019, , .                                                                                                   |     | 3         |
| 231 | Visible diode lasers for high bitrate underwater wireless optical communications. , 2019, , .                                                                                                                                                                    |     | 3         |
| 232 | Underwater optical wireless sensor network for real-time underwater environmental monitoring. ,<br>2022, , .                                                                                                                                                     |     | 3         |
| 233 | Low damage and low surface roughness GaInP etching in Cl[sub 2]/Ar electron cyclotron resonance process. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 1775. | 1.6 | 2         |
| 234 | Characterization of GaAs grown on SiGe/Si graded substrates using p-n junction diodes. Journal of Applied Physics, 2008, 104, .                                                                                                                                  | 1.1 | 2         |

| #   | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Nanoheteroepitaxy of gallium arsenide on strain-compliant silicon–germanium nanowires. Journal of<br>Applied Physics, 2010, 108, 024312.                                                                     | 1.1 | 2         |
| 236 | Reduced thermal quenching in indium-rich self-organized InGaN/GaN quantum dots. Journal of Applied<br>Physics, 2012, 112, 063506.                                                                            | 1,1 | 2         |
| 237 | Red to Near-Infrared Emission from InGaN/GaN Quantum-Disks-in-Nanowires LED. , 2014, , .                                                                                                                     |     | 2         |
| 238 | Nanomembranes: Exfoliation of Threading Dislocationâ€Free, Singleâ€Crystalline, Ultrathin Gallium<br>Nitride Nanomembranes (Adv. Funct. Mater. 16/2014). Advanced Functional Materials, 2014, 24, 2412-2412. | 7.8 | 2         |
| 239 | Subâ€1100Ânm lasing from postâ€growth intermixed InAs/GaAs quantumâ€dot lasers. Electronics Letters,<br>2015, 51, 1444-1445.                                                                                 | 0.5 | 2         |
| 240 | First demonstration of InGaP/InAlGaP based 608nm orange laser and 583nm yellow superluminescent diode. , 2015, , .                                                                                           |     | 2         |
| 241 | InGaN/GaN nanowire LEDs and lasers. , 2016, , .                                                                                                                                                              |     | 2         |
| 242 | GHz modulation enabled using large extinction ratio waveguide-modulator integrated with 404 nm<br>GaN laser diode. , 2016, , .                                                                               |     | 2         |
| 243 | Integrated photonic platform based on semipolar InGaN/GaN multiple section laser diodes. , 2017, , .                                                                                                         |     | 2         |
| 244 | InAs/InP quantum-dash lasers. , 2019, , 109-138.                                                                                                                                                             |     | 2         |
| 245 | Tunable Dual-Wavelength Self-injection Locked InGaN/GaN Green Laser Diode. IEEE Access, 2019, 7, 143324-143330.                                                                                              | 2.6 | 2         |
| 246 | Giant clam inspired high-speed photo-conversion for ultraviolet optical wireless communication.<br>Optical Materials Express, 2021, 11, 1515.                                                                | 1.6 | 2         |
| 247 | Nanoindentation Induced Elastic-plastic Deformation of GaN Nanomembrane on a Sapphire Substrate.<br>American Journal of Nanosciences, 2021, 7, 15.                                                           | 0.9 | 2         |
| 248 | Design and Deployment of Mobile FSO Communication System. , 2017, , .                                                                                                                                        |     | 2         |
| 249 | Monitoring the Red Palm Weevil Infestation Using Machine Learning and Optical Sensing. , 2021, , .                                                                                                           |     | 2         |
| 250 | Study on laser-based white light sources. , 2019, , .                                                                                                                                                        |     | 2         |
| 251 | Hybrid distributed acoustic-temperature sensing using a few-mode fiber. , 2020, , .                                                                                                                          |     | 2         |
| 252 | Study of High Nitrogen Compositions GaNAs and GaInNAs Material Quality by X-ray Diffraction and Photoluminescence. Materials Research Society Symposia Proceedings, 2001, 693, 643.                          | 0.1 | 1         |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Recent Progress in Dilute Nitride-antimonide Materials for Photonic and Electronic Applications. ECS Transactions, 2009, 19, 5-29.                                                                            | 0.3 | 1         |
| 254 | Effect of active medium inhomogeneity on lasing characteristics of InAs/InP quantum-dash lasers. , 2010, , .                                                                                                  |     | 1         |
| 255 | ZnO nanorods for simultaneous light trapping and transparent electrode application in solar cells. , 2011, , .                                                                                                |     | 1         |
| 256 | Influence of vertical coupling on the lasing operation of quantum-dash laser. , 2012, , .                                                                                                                     |     | 1         |
| 257 | Molecular Beam Epitaxy-Grown InGaN Nanomushrooms and Nanowires for White Light Source<br>Applications. , 2012, , .                                                                                            |     | 1         |
| 258 | Strain relief InGaN/GaN MQW micro-pillars for high brightness LEDs. , 2013, , .                                                                                                                               |     | 1         |
| 259 | Effect of optical waveguiding mechanism on the lasing action of chirped InAs/AlGaInAs/InP quantum dash lasers. Proceedings of SPIE, 2013, , .                                                                 | 0.8 | 1         |
| 260 | The formation of hexagonal-shaped InGaN-nanodisk on GaN-nanowire observed in plasma source molecular beam epitaxy. , 2014, , .                                                                                |     | 1         |
| 261 | Low modulation bias InGaN-based integrated EA-modulator-laser on semipolar GaN substrate. , 2015, , .                                                                                                         |     | 1         |
| 262 | Red to green emitters from InGaP/InAlGaP laser structure by strain-induced quantum-well intermixing. , 2016, , .                                                                                              |     | 1         |
| 263 | Nanowires: Enhanced Optoelectronic Performance of a Passivated Nanowire-Based Device: Key<br>Information from Real-Space Imaging Using 4D Electron Microscopy (Small 17/2016). Small, 2016, 12,<br>2312-2312. | 5.2 | 1         |
| 264 | High Power GaN-Based Blue Superluminescent Diode Exceeding 450 mW. , 2018, , .                                                                                                                                |     | 1         |
| 265 | Ultraviolet-A LED Based on Quantum-Disks-in-AlGaN-Nanowires—Optimization and Device Reliability. ,<br>2018, , .                                                                                               |     | 1         |
| 266 | Enhanced performance of 450 nm GaN laser diodes with an optical feedback for high bit-rate visible light communication. , 2018, , .                                                                           |     | 1         |
| 267 | Deep-Ultraviolet $\hat{I}^2$ -Ga2O3Photodetectors Grown on MgO Substrates with a TiN Template. , 2019, , .                                                                                                    |     | 1         |
| 268 | High-Speed Ultraviolet-C Photodetector Based on Frequency Down-Converting CsPbBr3 Perovskite<br>Nanocrystals on Silicon Platform. , 2019, , .                                                                 |     | 1         |
| 269 | Single-Port Superluminescent-Diode Gain-Chip for Tunable Single-Wavelength and Dual-Wavelength<br>Blue-Laser. IEEE Photonics Journal, 2021, 13, 1-11.                                                         | 1.0 | 1         |
| 270 | Special Section Guest Editorial: Semiconductor UV Photonics. Journal of Nanophotonics, 2018, 12, 1.                                                                                                           | 0.4 | 1         |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Off-the-shelf laser diodes with narrow-line emission at visible wavelengths by integration of distributed feedback (DFB) surface grating (Conference Presentation). , 2020, , .                           |     | 1         |
| 272 | GaN Nanowires Synthesized by Electroless Etching Method. , 2012, , .                                                                                                                                      |     | 1         |
| 273 | All-day radiative cooling using beam-controlled architectures. , 2019, , .                                                                                                                                |     | 1         |
| 274 | Producing OAM Information Carriers using Micro-structured Spiral Phase Plates. , 2019, , .                                                                                                                |     | 1         |
| 275 | Surface States Effect on the Large Photoluminescence Redshift in GaN Nanostructures. , 2013, , .                                                                                                          |     | 1         |
| 276 | Surface States Effect on the Large Photoluminescence Redshift in GaN Nanostructures. , 2013, , .                                                                                                          |     | 1         |
| 277 | Extremely wide lasing bandwidth from InAs/InP quantum-dash ridge-waveguide laser near 1.6 µm. , 2013,<br>, .                                                                                              |     | 1         |
| 278 | Achieving Room Temperature Orange Lasing Using InGaP/InAlGaP Red Laser Diode. , 2015, , .                                                                                                                 |     | 1         |
| 279 | Ti/TaN Bilayer for Efficient Injection and Reliable AlGaN Nanowires LEDs. , 2018, , .                                                                                                                     |     | 1         |
| 280 | Wideband self-injection-locked green tunable laser diode. , 2019, , .                                                                                                                                     |     | 1         |
| 281 | Blue Superluminescent Diodes with GHz Bandwidth Exciting Perovskite Nanocrystals for High CRI<br>White Lighting and High-Speed VLC. , 2019, , .                                                           |     | 1         |
| 282 | Large intermixing in the InGaP/InAlGaP laser structure using stress engineering at elevated temperature. , 2019, , .                                                                                      |     | 1         |
| 283 | Epitaxial growth of [beta]-Ga2O3/[epsilon]-Ga2O3 polymorphic heterostructures on c-plane sapphire for deep-ultraviolet optoelectronics. , 2020, , .                                                       |     | 1         |
| 284 | Prism-based tunable InGaN/GaN self-injection locked blue laser diode system: study of temperature, injection ratio, and stability. Journal of Nanophotonics, 2020, 14, 1.                                 | 0.4 | 1         |
| 285 | CNN-based detection of red palm weevil using optical-fiber-distributed acoustic sensing. , 2022, , .                                                                                                      |     | 1         |
| 286 | Underwater turbulence on scintillating-fiber based omnidirectional underwater wireless optical communication system. , 2022, , .                                                                          |     | 1         |
| 287 | Effect of rapid thermal annealing: red and blue shift in photoluminescence of GaNAs grown by RF<br>plasma-assisted molecular beam epitaxy. Materials Research Society Symposia Proceedings, 2001, 692, 1. | 0.1 | 0         |
| 288 | 1EV GAN <inf>x</inf> AS <inf>1-x-y</inf> SB <inf>y</inf> material for lattice-matched III–V solar cell implementation on GaAs and Ge. , 2009, , .                                                         |     | 0         |

| #   | Article                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Integrated Cu-based TM-pass polarizer using CMOS technology platform. , 2010, , .                                                                                  |     | Ο         |
| 290 | Integrated Cu-based TM-pass polarizer using CMOS technology platform. , 2010, , .                                                                                  |     | 0         |
| 291 | Engineering of refractive index in sulfide chalcogenide glass by direct laser writing. , 2010, , .                                                                 |     | Ο         |
| 292 | The influence of quantum-dash height on the differential gain and linewidth enhancement factor of<br>InAs/InP quantum-dash lasers. , 2010, , .                     |     | 0         |
| 293 | Characteristics of quantum dash laser under the rate equation model framework. , 2010, , .                                                                         |     | Ο         |
| 294 | Effect of carrier relaxation lifetime on the performance of InAs/InP quantum-dash lasers. , 2011, , .                                                              |     | 0         |
| 295 | Fabrication of tuning-fork based AFM and STM tungsten probe. , 2011, , .                                                                                           |     | 0         |
| 296 | Optical and micro-structural characterizations of MBE grown indium gallium nitride polar quantum dots. , 2011, , .                                                 |     | 0         |
| 297 | Theoretical observation of two state lasing from InAs/InP quantum-dash lasers. , 2011, , .                                                                         |     | 0         |
| 298 | High performance superluminescent diode with InAs quantum-dashes and chirped AlGaInAs barriers active region. , 2013, , .                                          |     | 0         |
| 299 | Numerically investigating the cause of broadband lasing from InAs/InP quantum-dash laser. , 2013, , .                                                              |     | 0         |
| 300 | Photonic analogies of gravitational attractors. , 2013, , .                                                                                                        |     | 0         |
| 301 | GaN Nano-membrane for Optoelectronic and Electronic Device Applications. , 2014, , .                                                                               |     | 0         |
| 302 | Optical Gain and Absorption of 420 nm InGaN-based Laser Diodes Grown on m-Plane GaN Substrate. ,<br>2014, , .                                                      |     | 0         |
| 303 | Extending quantum efficiency roll-over threshold with compositionally graded InGaN/GaN LED. , 2014, , .                                                            |     | Ο         |
| 304 | Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers. Proceedings of SPIE, 2014, , . | 0.8 | 0         |
| 305 | Chemical exfoliation and optical characterization of threading-dislocation-free gallium-nitride ultrathin nanomembranes. , 2014, , .                               |     | 0         |
| 306 | Origin of competing blue and green emission in InGaN/GaN quantum-disks in nanowires heterostructure. , 2015, , .                                                   |     | 0         |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Recent progress in InAs/InP quantum dash nanostructures and devices. , 2015, , .                                                                                                                                                  |     | Ο         |
| 308 | Hybrid perovskites: Approaches towards light-emitting devices. , 2016, , .                                                                                                                                                        |     | 0         |
| 309 | Continuous-wave Optically Pumped Lasing of Hybrid Perovskite VCSEL at Green Wavelength. , 2017, , .                                                                                                                               |     | Ο         |
| 310 | Metallic blazed grating TE mode resonance conditions and diffraction efficiency optical transfer function. , 2017, , .                                                                                                            |     | 0         |
| 311 | Power-dependent photoluminescence in strained In <inf>x</inf> Ga <inf>1â^'x</inf> N/GaN<br>multiple-quantum wells: Simulations of alloying and interface-specific effects. , 2018, , .                                            |     | Ο         |
| 312 | InGaN-based Nanowires on Conductive Substrates for Enhanced Solar Hydrogen Generation. , 2018, , .                                                                                                                                |     | 0         |
| 313 | Blue Superluminescent Diode on c-Plane GaN Beyond Gigahertz Modulation Bandwidth for Visible<br>Light Communication. , 2019, , .                                                                                                  |     | Ο         |
| 314 | Performance Characterization of High and Low Power Prism based Tunable Blue Laser Diodes Systems. , 2020, , .                                                                                                                     |     | 0         |
| 315 | Carrier localization and defect-insensitive optical behaviors of ultraviolet multiple quantum wells grown on patterned AlN nucleation layer. Journal of Alloys and Compounds, 2021, 861, 157589.                                  | 2.8 | Ο         |
| 316 | Overcoming the OTDR dead-zone using a few-mode fiber. , 2021, , .                                                                                                                                                                 |     | 0         |
| 317 | Highly efficient transverse-electric-dominant ultraviolet-C emitters employing GaN multiple quantum<br>disks in AlN nanowire matrix. , 2021, , .                                                                                  |     | Ο         |
| 318 | Heteroepitaxial βâ€Ga <sub>2</sub> O <sub>3</sub> on Conductive Ceramic Templates: Toward Ultrahigh<br>Gain Deepâ€Ultraviolet Photodetection (Adv. Mater. Technol. 9/2021). Advanced Materials Technologies,<br>2021, 6, 2170052. | 3.0 | 0         |
| 319 | Emission Dynamics of InAs/InP Quantum-Dash Laser. , 2012, , .                                                                                                                                                                     |     | 0         |
| 320 | Emission Dynamics of InAs/InP Quantum-Dash Laser. , 2012, , .                                                                                                                                                                     |     | 0         |
| 321 | Simulataneous Formation of InGaN Nanostructures with Varying Shapes for White Light Source Applications. , 2012, , .                                                                                                              |     | О         |
| 322 | Mesa-height Dependent Quantum Efficiency Characteristics of InGaN Micro-LEDs. , 2013, , .                                                                                                                                         |     | 0         |
| 323 | Increasing wavefunction overlap of carriers in an asymmetrically graded quantum well with polarization-effect-band-engineering , 2013, , .                                                                                        |     | 0         |
| 324 | Direct Growth of High-Power InGaN/GaN Quantum-Disks-in-Nanowires Red Light-Emitting Diodes on<br>Polycrystalline Molybdenum Substrates. , 2016, , .                                                                               |     | 0         |

| #   | Article                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | High-performance InGaN/GaN Quantum-Disks-in-Nanowires Light-emitters for Monolithic<br>Metal-Optoelectronics. , 2016, , .                                                |     | 0         |
| 326 | A Yellow Emitting InGaN/GaN Nanowires-based Light Emitting Diode Grown on Scalable Quartz<br>Substrate. , 2017, , .                                                      |     | 0         |
| 327 | Evolution of Junction Temperature and Heating Effects in UV AlGaN Nanowires LEDs. , 2018, , .                                                                            |     | 0         |
| 328 | High Performance self-injection locked 524 nm green laser diode for high bitrate visible light communications. , 2018, , .                                               |     | 0         |
| 329 | Detecting Underwater Laguerre Gaussian Modes using a Convolutional Neural Network. , 2019, , .                                                                           |     | 0         |
| 330 | Performance enhancement of noisy distributed acoustic sensor using normalized differential method. , 2019, , .                                                           |     | 0         |
| 331 | Quasi-single mode operated few-mode fiber for distributed acoustic sensing. , 2019, , .                                                                                  |     | 0         |
| 332 | Optical Properties and First Principles Study of CH3NH3PbBr3 Perovskite Structures for Solar Cell Application. Lecture Notes in Electrical Engineering, 2021, , 275-282. | 0.3 | 0         |
| 333 | 10-Gbit/s Sky-Blue Distributed Feedback Laser Diode-Based Visible Light Communication. , 2020, , .                                                                       |     | 0         |
| 334 | 1.5-Gbit/s Filter-free Optical Communication Link based on Wavelength-selective Semipolar ( 20 21 ${\rm \hat{A}}^{-}$ ) InGaN/GaN Micro-photodetector. , 2020, , .       |     | 0         |
| 335 | Performance of Temperature Tuned Red Laser Diode Employing Self Injection Locking Scheme. , 2020, , .                                                                    |     | 0         |
| 336 | Single/Multi-wavelength green laser diode system. , 2020, , .                                                                                                            |     | 0         |
| 337 | Hybrid Distributed Acoustic-Temperature Sensor Using a Multimode Fiber. , 2021, , .                                                                                      |     | 0         |
| 338 | All-inorganic halide-perovskite-polymer luminescent fibers for high-bitrate ultraviolet free-space optical communication. , 2021, , .                                    |     | 0         |
| 339 | Practical WDM photonic receiver based on wide-field-of-view and large-area detection scintillating fibers: a field experiment. , 2022, , .                               |     | 0         |
| 340 | Ultralow-power deep-ultraviolet photodetection using oxide-nitride heterojunctions integrated on silicon. , 2022, , .                                                    |     | 0         |
| 341 | Wide-field-of-view Perovskite Quantum-dots Fibers Array for Easing Pointing, Acquisition and Tracking in Underwater Wireless Optical Communication. , 2022, , .          |     | 0         |