Tien Khee Ng

List of Publications by Citations

Source: https://exaly.com/author-pdf/3104328/tien-khee-ng-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 270
 5,576
 39
 64

 papers
 h-index
 g-index

 347
 6,966
 4.4
 5.8

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
270	Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 5027-33	6.4	398
269	4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication. <i>Optics Express</i> , 2015 , 23, 23302-9	3.3	189
268	Perovskite Nanocrystals as a Color Converter for Visible Light Communication. <i>ACS Photonics</i> , 2016 , 3, 1150-1156	6.3	171
267	A polydimethylsiloxane-coated metal structure for all-day radiative cooling. <i>Nature Sustainability</i> , 2019 , 2, 718-724	22.1	162
266	20-meter underwater wireless optical communication link with 1.5 Gbps data rate. <i>Optics Express</i> , 2016 , 24, 25502-25509	3.3	145
265	2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode. <i>Optics Express</i> , 2015 , 23, 20743-8	3.3	130
264	Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting. <i>Nano Letters</i> , 2017 , 17, 1520-1528	11.5	129
263	High-speed colour-converting photodetector with all-inorganic CsPbBr perovskite nanocrystals for ultraviolet light communication. <i>Light: Science and Applications</i> , 2019 , 8, 94	16.7	125
262	The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites. <i>Applied Physics Letters</i> , 2015 , 106, 081902	3.4	106
261	Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication. <i>Optics Express</i> , 2015 , 23, 18746-53	3.3	104
260	Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. <i>Nanoscale</i> , 2016 , 8, 12294-306	7.7	95
259	2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system. <i>Optics Express</i> , 2015 , 23, 29779-87	3.3	90
258	Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate. <i>Advanced Functional Materials</i> , 2019 , 29, 1905445	15.6	85
257	Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics. <i>Nano Letters</i> , 2016 , 16, 4616-23	11.5	81
256	Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry. <i>Optics Express</i> , 2016 , 24, 16586-94	3.3	76
255	Facile Formation of High-Quality InGaN/GaN Quantum-Disks-in-Nanowires on Bulk-Metal Substrates for High-Power Light-Emitters. <i>Nano Letters</i> , 2016 , 16, 1056-63	11.5	73
254	An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley-Read-Hall recombination. <i>Nanoscale</i> , 2015 , 7, 16658-65	7.7	68

(2016-2015)

253	4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode. <i>Optics Express</i> , 2015 , 23, 33656-66	3.3	66	
252	Comparison of nitrogen compositions in the as-grown GaNxAs1\(\mathbb{I}\) on GaAs measured by high-resolution x-ray diffraction and secondary-ion mass spectroscopy. <i>Applied Physics Letters</i> , 2002 , 80, 4136-4138	3.4	64	
251	Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems. <i>Optics Letters</i> , 2017 , 42, 2455-2458	3	61	
250	High-Modulation-Efficiency, Integrated Waveguide Modulatorlaser Diode at 448 nm. <i>ACS Photonics</i> , 2016 , 3, 262-268	6.3	59	
249	Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations. <i>IEEE Photonics Journal</i> , 2017 , 9, 1-9	1.8	58	
248	Circulating exosomal CPNE3 as a diagnostic and prognostic biomarker for colorectal cancer. <i>Journal of Cellular Physiology</i> , 2019 , 234, 1416-1425	7	58	
247	Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 137-42	6.4	55	
246	Pt/AlGaN Nanoarchitecture: Toward High Responsivity, Self-Powered Ultraviolet-Sensitive Photodetection. <i>Nano Letters</i> , 2021 , 21, 120-129	11.5	55	
245	Surface-Passivated AlGaN Nanowires for Enhanced Luminescence of Ultraviolet Light Emitting Diodes. <i>ACS Photonics</i> , 2018 , 5, 964-970	6.3	54	
244	Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates. <i>Optics Express</i> , 2017 , 25, 1381-1390	3.3	54	
243	Determination of band offsets at GaN/single-layer MoS2 heterojunction. <i>Applied Physics Letters</i> , 2016 , 109, 032104	3.4	52	
242	Deep-Ultraviolet Photodetection Using Single-Crystalline EGaO/NiO Heterojunctions. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 35095-35104	9.5	48	
241	Effect of hydrofluoric acid concentration on the evolution of photoluminescence characteristics in porous silicon nanowires prepared by Ag-assisted electroless etching method. <i>Journal of Applied Physics</i> , 2012 , 112, 033502	2.5	48	
240	Band Alignment at GaN/Single-Layer WSe Interface. ACS Applied Materials & amp; Interfaces, 2017, 9, 91	19 .9 1′	1747	
239	Light based underwater wireless communications. Japanese Journal of Applied Physics, 2018, 57, 08PAC	061.4	47	
238	Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices. <i>Progress in Quantum Electronics</i> , 2014 , 38, 237-313	9.1	47	
237	III-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications. <i>Progress in Quantum Electronics</i> , 2018 , 61, 1-31	9.1	45	
236	High-brightness semipolar (2021[) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications. <i>Optics Letters</i> , 2016 , 41, 2608-11	3	45	

235	Rapid thermal annealing of GaNxAs1\(\text{grown by radio-frequency plasma assisted molecular beam epitaxy and its effect on photoluminescence. \(\text{Journal of Applied Physics}, \text{ 2002}, 91, 4900-4903 \)	2.5	44
234	Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In 0.33 Ga 0.67 N nanorods. <i>Nano Energy</i> , 2017 , 37, 158-167	17.1	43
233	A Review on Practical Considerations and Solutions in Underwater Wireless Optical Communication. <i>Journal of Lightwave Technology</i> , 2020 , 38, 421-431	4	41
232	High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth. <i>Optics Express</i> , 2016 , 24, 20281-6	3.3	41
231	3.2 Gigabit-per-second Visible Light Communication Link with InGaN/GaN MQW Micro-photodetector. <i>Optics Express</i> , 2018 , 26, 3037-3045	3.3	39
230	Focused-ion beam patterning of organolead trihalide perovskite for subwavelength grating nanophotonic applications. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2015 , 33, 051207	1.3	37
229	Graded-Index Separate Confinement Heterostructure AlGaN Nanowires: Toward Ultraviolet Laser Diodes Implementation. <i>ACS Photonics</i> , 2018 , 5, 3305-3314	6.3	37
228	71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation. <i>Optics Express</i> , 2017 , 25, 23267-23274	3.3	37
227	Photoinduced entropy of InGaN/GaN p-i-n double-heterostructure nanowires. <i>Applied Physics Letters</i> , 2017 , 110, 161110	3.4	35
226	Impact of N-plasma and Ga-irradiation on MoS2 layer in molecular beam epitaxy. <i>Applied Physics Letters</i> , 2017 , 110, 012101	3.4	34
225	Enhanced Optoelectronic Performance of a Passivated Nanowire-Based Device: Key Information from Real-Space Imaging Using 4D Electron Microscopy. <i>Small</i> , 2016 , 12, 2313-20	11	34
224	III-nitride disk-in-nanowire 1.2 h monolithic diode laser on (001)silicon. <i>Applied Physics Letters</i> , 2015 , 107, 191107	3.4	33
223	. IEEE Photonics Technology Letters, 2012 , 24, 724-726	2.2	32
222	375-nm ultraviolet-laser based non-line-of-sight underwater optical communication. <i>Optics Express</i> , 2018 , 26, 12870-12877	3.3	31
221	On the phenomenon of large photoluminescence red shift in GaN nanoparticles. <i>Nanoscale Research Letters</i> , 2013 , 8, 342	5	31
220	Two-step controllable electrochemical etching of tungsten scanning probe microscopy tips. <i>Review of Scientific Instruments</i> , 2012 , 83, 063708	1.7	31
219	High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication. <i>Optics Express</i> , 2018 , 26, 26355-26364	3.3	31
218	Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6922-6930	13	30

(2016-2014)

217	Exfoliation of Threading Dislocation-Free, Single-Crystalline, Ultrathin Gallium Nitride Nanomembranes. <i>Advanced Functional Materials</i> , 2014 , 24, 2305-2311	15.6	30
216	Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy. <i>Nanoscale</i> , 2017 , 9, 7805-7813	7.7	28
215	Review of nanophotonics approaches using nanostructures and nanofabrication for III-nitrides ultraviolet-photonic devices. <i>Journal of Nanophotonics</i> , 2018 , 12, 1	1.1	28
214	Determination of nitrogen composition in GaNxAs1\(\text{gen}\) epilayer on GaAs. <i>Journal of Crystal Growth</i> , 2004 , 268, 470-474	1.6	26
213	On the realization of across wavy water-air-interface diffuse-line-of-sight communication based on an ultraviolet emitter. <i>Optics Express</i> , 2019 , 27, 19635-19649	3.3	26
212	Group-III-Nitride Superluminescent Diodes for Solid-State Lighting and High-Speed Visible Light Communications. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2019 , 25, 1-10	3.8	25
211	Chirped InAs/InP quantum-dash laser with enhanced broad spectrum of stimulated emission. <i>Applied Physics Letters</i> , 2013 , 102, 091102	3.4	25
21 0	Semipolar IIIBitride quantum well waveguide photodetector integrated with laser diode for on-chip photonic system. <i>Applied Physics Express</i> , 2017 , 10, 042201	2.4	24
209	InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters. <i>RSC Advances</i> , 2017 , 7, 26665-26672	3.7	24
208	Tapering-induced enhancement of light extraction efficiency of nanowire deep ultraviolet LED by theoretical simulations. <i>Photonics Research</i> , 2018 , 6, 457	6	24
207	Real-Space Visualization of Energy Loss and Carrier Diffusion in a Semiconductor Nanowire Array Using 4D Electron Microscopy. <i>Advanced Materials</i> , 2016 , 28, 5106-11	24	23
206	Photoluminescence characteristics of GaInNAs quantum wells annealed at high temperature. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002 , 20, 964		23
205	Free-space optical channel characterization and experimental validation in a coastal environment. <i>Optics Express</i> , 2018 , 26, 6614-6628	3.3	22
204	A Simple FDTD Algorithm for Simulating EM-Wave Propagation in General Dispersive Anisotropic Material. <i>IEEE Transactions on Antennas and Propagation</i> , 2013 , 61, 1321-1326	4.9	22
203	Type-I band alignment at MoS2/In0.15Al0.85N lattice matched heterojunction and realization of MoS2 quantum well. <i>Applied Physics Letters</i> , 2017 , 111, 092104	3.4	22
202	Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications 2017 ,		22
201	True Yellow Light-Emitting Diodes as Phosphor for Tunable Color-Rendering Index Laser-Based White Light. <i>ACS Photonics</i> , 2016 , 3, 2089-2095	6.3	21
200	Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light. <i>Scientific Reports</i> , 2016 , 6, 33885	4.9	21

199	Highly uniform ultraviolet-A quantum-confined AlGaN nanowire LEDs on metal/silicon with a TaN interlayer. <i>Optical Materials Express</i> , 2017 , 7, 4214	2.6	21
198	Room temperature strong coupling effects from single ZnO nanowire microcavity. <i>Optics Express</i> , 2012 , 20, 11830-7	3.3	21
197	Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication. <i>Optics Express</i> , 2019 , 27, 30450-30461	3.3	21
196	Semipolar (\$20overline{21}\$) InGaN/GaN micro-photodetector for gigabit-per-second visible light communication. <i>Applied Physics Express</i> , 2020 , 13, 014001	2.4	20
195	Ultrabroad linewidth orange-emitting nanowires LED for high CRI laser-based white lighting and gigahertz communications. <i>Optics Express</i> , 2016 , 24, 19228-36	3.3	19
194	Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications. <i>Optics Express</i> , 2018 , 26, A219-A226	3.3	19
193	Unleashing the potential of molecular beam epitaxy grown AlGaN-based ultraviolet-spectrum nanowires devices. <i>Journal of Nanophotonics</i> , 2018 , 12, 1	1.1	19
192	Non-line-of-sight methodology for high-speed wireless optical communication in highly turbid water. <i>Optics Communications</i> , 2020 , 461, 125264	2	19
191	Role of quantum-confined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum disk amber light emitting diodes. <i>Journal of Applied Physics</i> , 2018 , 123, 1057	0 2 5	18
190	Field Demonstrations of Wide-Beam Optical Communications Through WaterAir Interface. <i>IEEE Access</i> , 2020 , 8, 160480-160489	3.5	18
189	Investigation of Self-Injection Locked Visible Laser Diodes for High Bit-Rate Visible Light Communication. <i>IEEE Photonics Journal</i> , 2018 , 10, 1-11	1.8	18
188	Iridocytes Mediate Photonic Cooperation Between Giant Clams (Tridacninae) and Their Photosynthetic Symbionts. <i>Frontiers in Marine Science</i> , 2020 , 7,	4.5	17
187	Early detection of red palm weevil using distributed optical sensor. Scientific Reports, 2020, 10, 3155	4.9	17
186	Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter. <i>Optics Letters</i> , 2017 , 42, 3618-3621	3	17
185	Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells. <i>Optics Express</i> , 2019 , 27, 34542-34551	3.3	17
184	Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group IIIBitrides, IIIBxides, and two-dimensional materials. <i>Journal of Semiconductors</i> , 2019 , 40, 121801	2.3	17
183	Observation of piezotronic and piezo-phototronic effects in n-InGaN nanowires/Ti grown by molecular beam epitaxy. <i>Nano Energy</i> , 2018 , 54, 264-271	17.1	17
182	Narrow-line InGaN/GaN green laser diode with high-order distributed-feedback surface grating. <i>Applied Physics Express</i> , 2019 , 12, 042007	2.4	16

(2008-2020)

Gbit/s ultraviolet-C diffuse-line-of-sight communication based on probabilistically shaped DMT and diversity reception. <i>Optics Express</i> , 2020 , 28, 9111-9122	3.3	16	
Enhanced photoelectrochemical performance of InGaN-based nanowire photoanodes by optimizing the ionized dopant concentration. <i>Journal of Applied Physics</i> , 2018 , 124, 083105	2.5	15	
Investigation of Chirped InAs/InGaAlAs/InP Quantum Dash Lasers as Broadband Emitters. <i>IEEE Journal of Quantum Electronics</i> , 2014 , 50, 51-61	2	15	
Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells. <i>Small</i> , 2017 , 13, 1603080	11	15	
480-nm distributed-feedback InGaN laser diode for 10.5-Gbit/s visible-light communication. <i>Optics Letters</i> , 2020 , 45, 742-745	3	15	
. Journal of Lightwave Technology, 2019 , 37, 5083-5090	4	14	
The role of nitrogen-nitrogen pairs in the deviation of the GaAsN lattice parameter from Vegard law. <i>Journal of Applied Physics</i> , 2004 , 96, 2010-2014	2.5	14	
Normalized differential method for improving the signal-to-noise ratio of a distributed acoustic sensor. <i>Applied Optics</i> , 2019 , 58, 4933-4938	1.7	14	
AquaE-lite Hybrid-Solar-Cell Receiver-Modality for Energy-Autonomous Terrestrial and Underwater Internet-of-Things. <i>IEEE Photonics Journal</i> , 2020 , 12, 1-13	1.8	14	
Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1-xN nanowires grown by plasma assisted molecular beam epitaxy. <i>Journal of Applied Physics</i> , 2016 , 120, 045701	2.5	14	
Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters. <i>Nanoscale</i> , 2018 , 10, 15980-15988	7.7	14	
Near-Infrared OAM Communication Using 3D-Printed Microscale Spiral Phase Plates. <i>IEEE Communications Magazine</i> , 2019 , 57, 65-69	9.1	13	
Enabling area-selective potential-energy engineering in InGaN/GaN quantum wells by post-growth intermixing. <i>Optics Express</i> , 2015 , 23, 7991-8	3.3	13	
Direct Growth of III-Nitride Nanowire-Based Yellow Light-Emitting Diode on Amorphous Quartz Using Thin Ti Interlayer. <i>Nanoscale Research Letters</i> , 2018 , 13, 41	5	13	
Enhancing the Light-Extraction Efficiency of an AlGaN Nanowire Ultraviolet Light-Emitting Diode by Using Nitride/Air Distributed Bragg Reflector Nanogratings. <i>IEEE Photonics Journal</i> , 2017 , 9, 1-8	1.8	13	
Achieving Uniform Carrier Distribution in MBE-Grown Compositionally Graded InGaN Multiple-Quantum-Well LEDs. <i>IEEE Photonics Journal</i> , 2015 , 7, 1-9	1.8	13	
Aqua-Fi: Delivering Internet Underwater Using Wireless Optical Networks. <i>IEEE Communications Magazine</i> , 2020 , 58, 84-89	9.1	12	
High responsivity GaNAsSb p-i-n photodetectors at 1.3 microm grown by radio-frequency nitrogen plasma-assisted molecular beam epitaxy. <i>Optics Express</i> , 2008 , 16, 7720-5	3.3	12	
	Enhanced photoelectrochemical performance of InGaN-based nanowire photoanodes by optimizing the ionized dopant concentration. <i>Journal of Applied Physics</i> , 2018, 124, 083105 Investigation of Chirped InAs/InGaAlas/InP Quantum Dash Lasers as Broadband Emitters. <i>IEEE Journal of Quantum Electronics</i> , 2014, 50, 51-61 Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells. <i>Small</i> , 2017, 13, 1603080 480-nm distributed-feedback InGaN laser diode for 10.5-Gbit/s visible-light communication. <i>Optics Letters</i> , 2020, 45, 742-745 . <i>Journal of Lightwave Technology</i> , 2019, 37, 5083-5090 The role of nitrogen-nitrogen pairs in the deviation of the GaAsN lattice parameter from VegardB law. <i>Journal of Applied Physics</i> , 2004, 96, 2010-2014 Normalized differential method for improving the signal-to-noise ratio of a distributed acoustic sensor. <i>Applied Optics</i> , 2019, 58, 4933-4938 AquaE-lite Hybrid-Solar-Cell Receiver-Modality for Energy-Autonomous Terrestrial and Underwater Internet-of-Things. <i>IEEE Photonics Journal</i> , 2020, 12, 1-13 Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1-xN nanowires grown by plasma assisted molecular beam epitaxy. <i>Journal of Applied Physics</i> , 2016, 120, 045701 Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters. <i>Nanoscale</i> , 2018, 10, 15980-15988 Near-Infrared OAM Communication Using 3D-Printed Microscale Spiral Phase Plates. <i>IEEE Communications Magazine</i> , 2019, 57, 65-69 Enabling area-selective potential-energy engineering in InGaN/GaN quantum wells by post-growth intermixing. <i>Optics Express</i> , 2015, 23, 7991-8 Direct Growth of Ill-Nitride Nanowire-Based Yellow Light-Emitting Diode on Amorphous Quartz Using Thin Til Interlayer. <i>Nanoscale Research Letters</i> , 2018, 13, 41 Enhancing the Light-Extraction Efficiency of an AlGaN Nanowire Ultraviolet Light-Emitting Diode by Using Nitride/Air Distributed Bragg Reflector Nanogratings. <i>IEEE Photonics Journal</i> , 2017, 9, 1-8 Achieving Uniform Carrier Distribution in	Enhanced photoelectrochemical performance of InGaN-based nanowire photoanodes by optimizing the ionized dopant concentration. <i>Journal of Applied Physics</i> , 2018, 124, 083105 Investigation of Chirped InAs/InGaAlAs/InP Quantum Dash Lasers as Broadband Emitters. <i>IEEE Journal of Quantum Electronics</i> , 2014, 50, 51-61 Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells. <i>Small</i> , 2017, 13, 1603080 11 480-nm distributed-feedback InGaN laser diode for 10.5-Gbit/s visible-light communication. <i>Optics Letters</i> , 2020, 45, 742-745 . <i>Journal of Lightwave Technology</i> , 2019, 37, 5083-5090 4 The role of nitrogen-nitrogen pairs in the deviation of the GaAsN lattice parameter from Vegard8 law. <i>Journal of Applied Physics</i> , 2004, 96, 2010-2014 Normalized differential method for improving the signal-to-noise ratio of a distributed acoustic sensor. <i>Applied Optics</i> , 2019, 58, 4933-4938 AquaE-lite Hybrid-Solar-Cell Receiver-Modality for Energy-Autonomous Terrestrial and Underwater Internet-of-Things. <i>IEEE Photonics Journal</i> , 2020, 12, 1-13 Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1-xN nanowires grown by plasma assisted molecular beam epitaxy. <i>Journal of Applied Physics</i> , 2016, 120, 045701 Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters. <i>Nanoscale</i> , 2018, 10, 15980-15988 Near-Infrared OAM Communication Using 3D-Printed Microscale Spiral Phase Plates. <i>IEEE Communications Magazine</i> , 2019, 57, 65-69 Enabling area-selective potential-energy engineering in InGaN/GaN quantum wells by post-growth intermixing. <i>Optics Express</i> , 2015, 23, 7991-8 Direct Crowth of Ill-Nitride Nanowire-Based Yellow Light-Emitting Diode on Amorphous Quartz Using Thin Ti Interlayer. <i>Nanoscale Research Letters</i> , 2018, 13, 41 Enhancing the Light-Extraction Efficiency of an AlGaN Nanowire Ultraviolet Light-Emitting Diode by Using Nitride/Air Distributed Bragg Reflector Morganings. <i>IEEE Photonics Journal</i> , 2017, 9, 1-8 Achieving Uniform Carrier Distributio	Enhanced photoelectrochemical performance of inGaN-based nanowine photoanodes by optimizing the ionized depant concentration. Journal of Applied Physics, 2018, 124, 083105 2.5 15 Investigation of Chirped InAs/InGaNas/InP Quantum Dash Lasers as Broadband Emitters. IEEE Journal of Quantum Electronics, 2014, 50, 51-61 2.5 15 Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells. Small, 2017, 13, 1603080 11 15 480-nm distributed-feedback InGaN laser diode for 10.5-Gbit/s visible-light communication. Optics Letters, 2020, 45, 742-745 3.15 Journal of Lightwave Technology, 2019, 37, 5083-5090 4.14 The role of nitrogen-nitrogen pairs in the deviation of the GaAsN lattice parameter from Vegard8 law. Journal of Applied Physics, 2004, 96, 2010-2014 2.5 14 Normalized differential method for improving the signal-to-noise ratio of a distributed acoustic sensor. Applied Optics, 2019, 58, 4933-4938 1.4 AquaE-lite Hybrid-Solar-Cell Receiver-Modality for Energy-Autonomous Terrestrial and Underwater Internet-of-Things. IEEE Photonics Journal, 2020, 12, 1-13 Bandgap measurements and the peculiar splitting of E2H phonon modes of inxAl1-xN nanowires grown by plasma assisted molecular beam epitaxy. Journal of Applied Physics, 2016, 120, 045701 2.5 14 Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters. Nanoscale, 2018, 10, 15980-15988 2.19, 57, 65-69 2.19, 57, 65-69 2.19, 57, 65-69 2.19, 57, 65-69 2.19, 57, 65-69 2.19, 57, 65-69 2.19, 57, 65-69 2.19, 57, 65-69 3.19, 57, 65-

163	Thermally induced diffusion in GaInNAstaAs and GaInAstaAs quantum wells grown by solid source molecular beam epitaxy. <i>Journal of Applied Physics</i> , 2005 , 97, 013506	2.5	12
162	Photoluminescence quenching mechanisms in GaInNAs/GaAs quantum well grown by solid source molecular beam epitaxy. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2003 , 21, 2324		12
161	Molecular beam epitaxial growth of GaAs1XNX with dispersive nitrogen source. <i>Journal of Crystal Growth</i> , 2002 , 242, 87-94	1.6	12
160	Improved solar hydrogen production by engineered doping of InGaN/GaN axial heterojunctions. <i>Optics Express</i> , 2019 , 27, A81-A91	3.3	12
159	Carbon nanotube-graphene composite film as transparent conductive electrode for GaN-based light-emitting diodes. <i>Applied Physics Letters</i> , 2016 , 109, 081902	3.4	12
158	Imaging Localized Energy States in Silicon-Doped InGaN Nanowires Using 4D Electron Microscopy. <i>ACS Energy Letters</i> , 2018 , 3, 476-481	20.1	11
157	Flexible InGaN nanowire membranes for enhanced solar water splitting. Optics Express, 2018, 26, A640-	-A56≨0	11
156	Photoluminescence characterization of GaInNAs/GaAs quantum well carrier dynamics. <i>Journal of Applied Physics</i> , 2003 , 94, 3110-3114	2.5	11
155	The effect of turbulence on NLOS underwater wireless optical communication channels [Invited]. <i>Chinese Optics Letters</i> , 2019 , 17, 100013	2.2	11
154	Survey of energy-autonomous solar cell receivers for satellitellirgroundlicean optical wireless communication. <i>Progress in Quantum Electronics</i> , 2020 , 74, 100300	9.1	11
153	On the optical and microstrain analysis of graded InGaN/GaN MQWs based on plasma assisted molecular beam epitaxy. <i>Optical Materials Express</i> , 2016 , 6, 2052	2.6	11
152	Thermodynamic photoinduced disorder in AlGaN nanowires. <i>AIP Advances</i> , 2017 , 7, 125113	1.5	10
151	Electron irradiation induced reduction of the permittivity in chalcogenide glass (As2S3) thin film. Journal of Applied Physics, 2013 , 113, 044116	2.5	10
150	Analysis and optimization of the annealing mechanisms in (In)GaAsN on GaAs. <i>Semiconductor Science and Technology</i> , 2006 , 21, 808-812	1.8	10
149	Enhanced electro-optic performance of surface-treated nanowires: origin and mechanism of nanoscale current injection for reliable ultraviolet light-emitting diodes. <i>Optical Materials Express</i> , 2019 , 9, 203	2.6	10
148	Visible light communication using DC-biased optical filter bank multi-carrier modulation 2018,		9
147	High Reflectivity YDH/SiO2 Distributed Bragg Reflector for UV-C Wavelength Regime. <i>IEEE Photonics Journal</i> , 2018 , 10, 1-8	1.8	9
146	Study of surface microstructure origin and evolution for GaAs grown on Ge/Si1\(\mathbb{G}\) Gex/Si substrate. Journal Physics D: Applied Physics, 2009 , 42, 035303	3	9

(2018-2002)

145	Effect of In and N incorporation on the properties of lattice-matched GaInNAs/GaAs grown by radio frequency plasma-assisted solid-source molecular beam epitaxy. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and</i>		9
144	Phenomena, 2002, 20, 2091 Dual-wavelength luminescent fibers receiver for wide field-of-view, Gb/s underwater optical wireless communication. Optics Express, 2021, 29, 38014-38026	3.3	9
143	Wide-field-of-view optical detectors using fused fiber-optic tapers. <i>Optics Letters</i> , 2021 , 46, 1916-1919	3	9
142	Scintillations of RGB laser beams in weak temperature and salinity-induced oceanic turbulence 2018,		9
141	Twofold Porosity and Surface Functionalization Effect on Pt-Porous GaN for High-Performance H-Gas Sensors at Room Temperature. <i>ACS Omega</i> , 2019 , 4, 1678-1684	3.9	8
140	First demonstration of InGaP/InAlGaP based orange laser emitting at 608hm. <i>Electronics Letters</i> , 2015 , 51, 1102-1104	1.1	8
139	Ultraviolet-A LED Based on Quantum-Disks-In-AlGaN-Nanowires Dptimization and Device Reliability. <i>IEEE Photonics Journal</i> , 2018 , 10, 1-11	1.8	8
138	Bandwidth enhancement of wireless optical communication link using a near-infrared laser over turbid underwater channel 2017 ,		8
137	Anomalous photoluminescence thermal quenching of sandwiched single layer MoS_2. <i>Optical Materials Express</i> , 2017 , 7, 3697	2.6	8
136	High-Power and High-Efficiency 1.3- \$muhbox{m} \$ Superluminescent Diode With Flat-Top and Ultrawide Emission Bandwidth. <i>IEEE Photonics Journal</i> , 2015 , 7, 1-8	1.8	8
135	Simultaneous quantum dash-well emission in a chirped dash-in-well superluminescent diode with spectral bandwidth >700 nm. <i>Optics Letters</i> , 2013 , 38, 3720-3	3	8
134	Modeling the lasing spectra of InAs/InP Quantum dash lasers. <i>Applied Physics Letters</i> , 2011 , 98, 101105	3.4	8
133	Laser-based visible light communications and underwater wireless optical communications: a device perspective 2019 ,		8
132	Single-Crystalline All-Oxide IIIHeterostructures for Deep-Ultraviolet Photodetection. <i>ACS Applied Materials & Deep Applied & Deep Appli</i>	9.5	8
131	Wireless optical transmission of 450 nm, 3.2 Gbit/s 16-QAM-OFDM signals over 6.6 m underwater channel 2016 ,		8
130	Tunable self-injection locked green laser diode. <i>Optics Letters</i> , 2018 , 43, 4931-4934	3	8
129	7.4-Gbit/s Visible-Light Communication Utilizing Wavelength-Selective Semipolar Micro-Photodetector. <i>IEEE Photonics Technology Letters</i> , 2020 , 1-1	2.2	7
128	Diode junction temperature in ultraviolet AlGaN quantum-disks-in-nanowires. <i>Journal of Applied Physics</i> , 2018 , 124, 015702	2.5	7

127	Going beyond 10-meter, Gbit/s underwater optical wireless communication links based on visible lasers 2017 ,		7
126	14-GHz GaNAsSb Unitraveling-Carrier 1.3-\$muhbox{m}\$ Photodetectors Grown by RF Plasma-Assisted Nitrogen Molecular Beam Epitaxy. <i>IEEE Electron Device Letters</i> , 2009 , 30, 590-592	4.4	7
125	Simultaneous Distributed Acoustic and Temperature Sensing Using a Multimode Fiber. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2020 , 26, 1-7	3.8	7
124	A Review of Using Few-Mode Fibers for Optical Sensing. <i>IEEE Access</i> , 2020 , 8, 179592-179605	3.5	7
123	On the Reciprocity of Underwater Turbulent Channels. <i>IEEE Photonics Journal</i> , 2019 , 11, 1-9	1.8	7
122	Group-III-nitride and halide-perovskite semiconductor gain media for amplified spontaneous emission and lasing applications. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 143001	3	7
121	Compact scintillating-fiber/450-nm-laser transceiver for full-duplex underwater wireless optical communication system under turbulence <i>Optics Express</i> , 2022 , 30, 53-69	3.3	7
120	Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications 2017 ,		6
119	Analysis of optical injection on red and blue laser diodes for high bit-rate visible light communication. <i>Optics Communications</i> , 2019 , 449, 79-85	2	6
118	Worst-case residual clipping noise power model for bit loading in LACO-OFDM 2018,		6
117	Spectral Analysis of Quantum-Dash Lasers: Effect of Inhomogeneous Broadening of the Active-Gain Region. <i>IEEE Journal of Quantum Electronics</i> , 2012 , 48, 608-615	2	6
116	Distinct Lasing Operation From Chirped InAs/InP Quantum-Dash Laser. <i>IEEE Photonics Journal</i> , 2013 , 5, 1501308-1501308	1.8	6
115	Effect of the number of stacking layers on the characteristics of quantum-dash lasers. <i>Optics Express</i> , 2011 , 19, 13378-85	3.3	6
114	GaNAsSb/GaAs waveguide photodetector with response up to 1.6 fb grown by molecular beam epitaxy. <i>Applied Physics Letters</i> , 2008 , 93, 081102	3.4	6
113	A Review of Distributed Fiberoptic Sensing in the Oil and Gas Industry. <i>Journal of Lightwave Technology</i> , 2021 , 1-1	4	6
112	Nanoporous GaN/n-type GaN: A Cathode Structure for ITO-Free Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2020 , 5, 3295-3303	20.1	6
111	Large bandgap blueshifts in the InGaP/InAlGaP laser structure using novel strain-induced quantum well intermixing. <i>Journal of Applied Physics</i> , 2016 , 119, 135703	2.5	6
110	Investigating the Performance of a Few-Mode Fiber for Distributed Acoustic Sensing. <i>IEEE Photonics Journal</i> , 2019 , 11, 1-10	1.8	5

109	2013,		5
108	2013,		5
107	. IEEE Photonics Journal, 2014 , 6, 1-8	1.8	5
106	Improved GaNxAs1⊠ quality grown by molecular beam epitaxy with dispersive nitrogen source. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 1364		5
105	Real-time Optical-Wireless Video Surveillance System for High Visual-fidelity Underwater Monitoring. <i>IEEE Photonics Journal</i> , 2022 , 1-1	1.8	5
104	The Impact of Vertical Salinity Gradient on Non-Line-of-Sight Underwater Optical Wireless Communication. <i>IEEE Photonics Journal</i> , 2021 , 1-1	1.8	5
103	Titanium Carbide MXene Nucleation Layer for Epitaxial Growth of High-Quality GaN Nanowires on Amorphous Substrates. <i>ACS Nano</i> , 2020 , 14, 2202-2211	16.7	5
102	Diffused-Line-of-Sight Communication for Mobile and Fixed Underwater Nodes. <i>IEEE Photonics Journal</i> , 2020 , 12, 1-13	1.8	5
101	Tunable Violet Laser Diode System for Optical Wireless Communication. <i>IEEE Photonics Technology Letters</i> , 2020 , 32, 546-549	2.2	5
100	Improved H2 detection performance of GaN sensor with Pt/Sulfide treatment of porous active layer prepared by metal electroless etching. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 4614-46	525	5
99	Towards Detecting Red Palm Weevil Using Machine Learning and Fiber Optic Distributed Acoustic Sensing. <i>Sensors</i> , 2021 , 21,	3.8	5
98	Optical Properties and First-Principles Study of CHNHPbBr Perovskite Structures. <i>ACS Omega</i> , 2020 , 5, 12313-12319	3.9	4
97	Piezotronic AlGaN nanowire Schottky junctions grown on a metal substrate. AIP Advances, 2020, 10, 055	50.154	4
96	First demonstration of orange-yellow light emitter devices in InGaP/InAlGaP laser structure using strain-induced quantum well intermixing technique 2016 ,		4
95	. IEEE Journal of Selected Topics in Quantum Electronics, 2019 , 25, 1-7	3.8	4
94	Spectrally Resolved Characterization of Thermally Induced Underwater Turbulence Using a Broadband White-Light Interrogator. <i>IEEE Photonics Journal</i> , 2019 , 11, 1-9	1.8	4
93	Enhancing Carrier Injection Using Graded Superlattice Electron Blocking Layer for UVB Light-Emitting Diodes. <i>IEEE Photonics Journal</i> , 2014 , 6, 1-12	1.8	4
92	Origin and suppression of V-shaped defects in the capping of self-assembled InAs quantum dots on graded Si1\(\mathbb{Q} \) Gex/Si substrate. <i>Applied Physics Letters</i> , 2009 , 95, 052111	3.4	4

91	1.3-\$mu\$ m GaNAsSb©aAs UTC-Photodetectors for 10-Gigabit Ethernet Links. <i>IEEE Photonics Technology Letters</i> , 2009 , 21, 911-913	2.2	4
90	1.55th GaAstanAsSbtaAs optical waveguides grown by radio frequency nitrogen plasma-assisted molecular beam epitaxy. <i>Applied Physics Letters</i> , 2008 , 92, 113513	3.4	4
89	The influence of emitter material on silicon nitride passivation-induced degradation in InP-based HBTs. <i>IEEE Transactions on Electron Devices</i> , 2004 , 51, 8-13	2.9	4
88	Charging suppression in focused-ion beam fabrication of visible subwavelength dielectric grating reflector using electron conducting polymer. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2015 , 33, 06F701	1.3	4
87	Influences of ALD Al2O3 on the surface band-bending of c-plane, Ga-face GaN. <i>Japanese Journal of Applied Physics</i> ,	1.4	4
86	Synthesis of In0.1Ga0.9N/GaN structures grown by MOCVD and MBE for high speed optoelectronics. <i>MRS Advances</i> , 2016 , 1, 1735-1742	0.7	4
85	Health-friendly high-quality white light using violet-green-red laser and InGaN nanowires-based true yellow nanowires light-emitting diodes 2017 ,		3
84	Direct Growth of Single Crystalline GaN Nanowires on Indium Tin Oxide-Coated Silica. <i>Nanoscale Research Letters</i> , 2019 , 14, 45	5	3
83	On the impact of indium distribution on the electronic properties in InGaN nanodisks. <i>Applied Physics Letters</i> , 2015 , 106, 101910	3.4	3
82	THz behavior originates from different arrangements of coalescent GaN nanorods grown on Si (111) and Si (100) substrates. <i>Applied Surface Science</i> , 2020 , 522, 146422	6.7	3
81	Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts 2016 ,		3
80	Spatially resolved investigation of competing nanocluster emission in quantum-disks-in-nanowires structure characterized by nanoscale cathodoluminescence. <i>Journal of Nanophotonics</i> , 2017 , 11, 026015	1.1	3
79	Underwater wireless optical communications: From system-level demonstrations to channel modelling 2017 ,		3
78	Enhancement of Hole Confinement by Monolayer Insertion in Asymmetric Quantum-Barrier UVB Light Emitting Diodes. <i>IEEE Photonics Journal</i> , 2014 , 6, 1-9	1.8	3
77	Generation of J0-Bessel-Gauss beam by a heterogeneous refractive index map. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2012 , 29, 1252-8	1.8	3
76	Thermal Annealing induced relaxation of compressive strain in porous GaN structures 2012,		3
75	GHz modulation bandwidth from single-longitudinal mode violet-blue VCSEL using nonpolar InGaN/GaN QWs 2016 ,		3
74	Towards Early Detection of Red Palm Weevil Using Optical Fiber Distributed Acoustic Sensor 2019,		3

73	2.4-Gbps Ultraviolet-C Solar-Blind Communication Based on Probabilistically Shaped DMT Modulation 2020 ,		3
72	Toward Automatic Subsea Operations Using Real-Time Underwater Optical Wireless Sensor Networks. <i>IEEE Photonics Journal</i> , 2022 , 14, 1-8	1.8	3
71	Demonstration of a low-complexity memory-polynomial-aided neural network equalizer for CAP visible-light communication with superluminescent diode. <i>Opto-Electronic Advances</i> , 2020 , 3, 200009-200	666	3
70	A tutorial on laser-based lighting and visible light communications: device and technology [Invited]. <i>Chinese Optics Letters</i> , 2019 , 17, 040601	2.2	3
69	Near-Infrared Wireless Optical Communication with Particulates In-Suspension over the Underwater Channel 2017 ,		3
68	Underwater wireless optical communications: Opportunity, challenges and future prospects commentary on R ecent progress in and perspectives of underwater wireless optical communication[] <i>Progress in Quantum Electronics</i> , 2020 , 73, 100275	9.1	3
67	Quantifying the Transverse-Electric-Dominant 260 nm Emission from Molecular Beam Epitaxy-Grown GaN-Quantum-Disks Embedded in AlN Nanowires: A Comprehensive Optical and Morphological Characterization. ACS Applied Materials & Interfaces, 2020, 12, 41649-41658	9.5	3
66	InGaN-based nanowires development for energy harvesting and conversion applications. <i>Journal of Applied Physics</i> , 2021 , 129, 121103	2.5	3
65	Toward Large-Scale GaO Membranes via Quasi-Van Der Waals Epitaxy on Epitaxial Graphene Layers. <i>ACS Applied Materials & Des Careers and September 2</i> 13, 13410-13418	9.5	3
64	Heteroepitaxial EGa2O3 on Conductive Ceramic Templates: Toward Ultrahigh Gain Deep-Ultraviolet Photodetection. <i>Advanced Materials Technologies</i> , 2021 , 6, 2100142	5.8	3
63	High gain semiconductor optical amplifier Laser diode at visible wavelength 2016,		3
62	Blue Laser Diode System With an Enhanced Wavelength Tuning Range. <i>IEEE Photonics Journal</i> , 2020 , 12, 1-10	1.8	2
61	Effect of annealing InGaP/InAlGaP laser structure at 950°C on laser characteristics. <i>Journal of Nanophotonics</i> , 2016 , 10, 036004	1.1	2
60	GHz modulation enabled using large extinction ratio waveguide-modulator integrated with 404 nm GaN laser diode 2016 ,		2
59	InAs/InP quantum-dash lasers 2019 , 109-138		2
58	Integrated photonic platform based on semipolar InGaN/GaN multiple section laser diodes 2017,		2
57	Red to Near-Infrared Emission from InGaN/GaN Quantum-Disks-in-Nanowires LED 2014,		2
56	Reduced thermal quenching in indium-rich self-organized InGaN/GaN quantum dots. <i>Journal of Applied Physics</i> , 2012 , 112, 063506	2.5	2

55	A possible approach on optical analogues of gravitational attractors. <i>Optics Express</i> , 2013 , 21, 8298-310	3.3	2
54	Nanoheteroepitaxy of gallium arsenide on strain-compliant silicongermanium nanowires. <i>Journal of Applied Physics</i> , 2010 , 108, 024312	2.5	2
53	Molecular beam epitaxy growth of bulk GaNAsSb on Ge/graded-SiGe/Si substrate. <i>Journal of Crystal Growth</i> , 2009 , 311, 1754-1757	1.6	2
52	Characterization of GaAs grown on SiGe/Si graded substrates using p-n junction diodes. <i>Journal of Applied Physics</i> , 2008 , 104, 073710	2.5	2
51	Anomalous temperature-dependent photoluminescence characteristic of as-grown GalnNAs/GaAs quantum well grown by solid source molecular beam epitaxy. <i>Journal of Crystal Growth</i> , 2004 , 270, 351-	358	2
50	All-inorganic halide-perovskite polymer-fiber-photodetector for high-speed optical wireless communication <i>Optics Express</i> , 2022 , 30, 9823-9840	3.3	2
49	Boosted ultraviolet photodetection of AlGaN quantum-disk nanowires via rational surface passivation. <i>Journal Physics D: Applied Physics</i> , 2022 , 55, 125101	3	2
48	Functional integrity and stable high-temperature operation of planarized ultraviolet-A AlxGa1N/AlyGa1N multiple-quantum-disk nanowire LEDs with charge-conduction promoting interlayer 2019 ,		2
47	3.8-Gbit/s visible light communication (VLC) based on 443-nm superluminescent diode and bit-loading discrete-multiple-tone (DMT) modulation scheme 2020 ,		2
46	Design and Deployment of Mobile FSO Communication System 2017,		2
46 45	Design and Deployment of Mobile FSO Communication System 2017, Electrical characterization of solar-blind deep-ultraviolet (Al0.28Ga0.72)2O3 Schottky photodetectors grown on silicon by pulsed laser deposition 2019,		2
	Electrical characterization of solar-blind deep-ultraviolet (Al0.28Ga0.72)2O3 Schottky		
45	Electrical characterization of solar-blind deep-ultraviolet (Al0.28Ga0.72)2O3 Schottky photodetectors grown on silicon by pulsed laser deposition 2019 ,	3	2
45 44	Electrical characterization of solar-blind deep-ultraviolet (Al0.28Ga0.72)2O3 Schottky photodetectors grown on silicon by pulsed laser deposition 2019 , Study on laser-based white light sources 2019 ,	3	2
45 44 43	Electrical characterization of solar-blind deep-ultraviolet (Al0.28Ga0.72)2O3 Schottky photodetectors grown on silicon by pulsed laser deposition 2019, Study on laser-based white light sources 2019, Sensing within the OTDR dead-zone using a two-mode fiber. <i>Optics Letters</i> , 2020, 45, 2969-2972 TimeEnergy Quantum Uncertainty: Quantifying the Effectiveness of Surface Defect Passivation		2 2 2
45 44 43 42	Electrical characterization of solar-blind deep-ultraviolet (Al0.28Ga0.72)2O3 Schottky photodetectors grown on silicon by pulsed laser deposition 2019, Study on laser-based white light sources 2019, Sensing within the OTDR dead-zone using a two-mode fiber. Optics Letters, 2020, 45, 2969-2972 TimeEnergy Quantum Uncertainty: Quantifying the Effectiveness of Surface Defect Passivation Protocols for Low-Dimensional Semiconductors. ACS Applied Electronic Materials, 2020, 2, 409-418 Characterization of epitaxial titanium nitride mediated single-crystal nickel oxide grown on	4	2 2 2
45 44 43 42 41	Electrical characterization of solar-blind deep-ultraviolet (Al0.28Ga0.72)2O3 Schottky photodetectors grown on silicon by pulsed laser deposition 2019, Study on laser-based white light sources 2019, Sensing within the OTDR dead-zone using a two-mode fiber. Optics Letters, 2020, 45, 2969-2972 TimeEnergy Quantum Uncertainty: Quantifying the Effectiveness of Surface Defect Passivation Protocols for Low-Dimensional Semiconductors. ACS Applied Electronic Materials, 2020, 2, 409-418 Characterization of epitaxial titanium nitride mediated single-crystal nickel oxide grown on MgO-(100) and Si-(100). AIP Advances, 2020, 10, 065318 Colloidal PbS Quantum Dots for Visible-to-Near-Infrared Optical Internet of Things. IEEE Photonics	1.5	2 2 2 2

37	InGaN/GaN nanowire LEDs and lasers 2016,	2
36	InAs/GaAs quantum-dot intermixing: comparison of various dielectric encapsulants. <i>Optical Engineering</i> , 2015 , 54, 107107	1
35	Nanowires: Enhanced Optoelectronic Performance of a Passivated Nanowire-Based Device: Key Information from Real-Space Imaging Using 4D Electron Microscopy (Small 17/2016). <i>Small</i> , 2016 , 11, 2312	1
34	Tunable Dual-Wavelength Self-injection Locked InGaN/GaN Green Laser Diode. IEEE Access, 2019, 7, 1433,254	-143330
33	Nanomembranes: Exfoliation of Threading Dislocation-Free, Single-Crystalline, Ultrathin Gallium Nitride Nanomembranes (Adv. Funct. Mater. 16/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 2412-2415.	1
32	Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations 2017 ,	1
31	Sub-1100 hm lasing from post-growth intermixed InAs/GaAs quantum-dot lasers. <i>Electronics Letters</i> , 2015 , 51, 1444-1445	1
30	First demonstration of InGaP/InAlGaP based 608nm orange laser and 583nm yellow superluminescent diode 2015 ,	1
29	2015,	1
28	The formation of hexagonal-shaped InGaN-nanodisk on GaN-nanowire observed in plasma source molecular beam epitaxy 2014 ,	1
27	ZnO nanorods for simultaneous light trapping and transparent electrode application in solar cells 2011 ,	1
26	Effect of active medium inhomogeneity on lasing characteristics of InAs/InP quantum-dash lasers 2010 ,	1
25	Recent Progress in Dilute Nitride-antimonide Materials for Photonic and Electronic Applications. <i>ECS Transactions</i> , 2009 , 19, 5-29	1
24	Molecular Beam Epitaxy-Grown InGaN Nanomushrooms and Nanowires for White Light Source Applications 2012 ,	1
23	Low damage and low surface roughness GaInP etching in Cl2/Ar electron cyclotron resonance process. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2001 , 19, 1775	1
22	Study of High Nitrogen Compositions GaNAs and GalnNAs Material Quality by X-ray Diffraction and Photoluminescence. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 693, 643	1
21	Special Section Guest Editorial: Semiconductor UV Photonics. <i>Journal of Nanophotonics</i> , 2018 , 12, 1	1
20	GaN Nanowires Synthesized by Electroless Etching Method 2012 ,	1

19	All-day radiative cooling using beam-controlled architectures 2019,		1
18	Producing OAM Information Carriers using Micro-structured Spiral Phase Plates 2019,		1
17	Prism-based tunable InGaN/GaN self-injection locked blue laser diode system: study of temperature, injection ratio, and stability. <i>Journal of Nanophotonics</i> , 2020 , 14, 1	1.1	1
16	Visible diode lasers for high bitrate underwater wireless optical communications 2019,		1
15	Blue Superluminescent Diodes with GHz Bandwidth Exciting Perovskite Nanocrystals for High CRI White Lighting and High-Speed VLC 2019 ,		1
14	Extremely wide lasing bandwidth from InAs/InP quantum-dash ridge-waveguide laser near 1.6 🏻 m 2013 ,		1
13	High-Speed Ultraviolet-C Photodetector Based on Frequency Down-Converting CsPbBr3 Perovskite Nanocrystals on Silicon Platform 2019 ,		1
12	High Power GaN-Based Blue Superluminescent Diode Exceeding 450 mW 2018,		1
11	Enhanced performance of 450 nm GaN laser diodes with an optical feedback for high bit-rate visible light communication 2018 ,		1
10	Optical properties of freestanding GaN nanomembranes using monochromated valence-EELS. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2021 , 272, 115333	3.1	1
9	Silicon-integrated monocrystalline oxidelitride heterostructures for deep-ultraviolet optoelectronics. <i>Optical Materials Express</i> , 2021 , 11, 4130	2.6	0
8	Single-Port Superluminescent-Diode Gain-Chip for Tunable Single-Wavelength and Dual-Wavelength Blue-Laser. <i>IEEE Photonics Journal</i> , 2021 , 13, 1-11	1.8	O
7	Visible-Light Laser Diodes and Superluminescent Diodes: Characteristics and Applications1-17		O
6	Effect of rapid thermal annealing: red and blue shift in photoluminescence of GaNAs grown by RF plasma-assisted molecular beam epitaxy. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 692, 1		
5	Optical Properties and First Principles Study of CH3NH3PbBr3 Perovskite Structures for Solar Cell Application. <i>Lecture Notes in Electrical Engineering</i> , 2021 , 275-282	0.2	
4	Carrier localization and defect-insensitive optical behaviors of ultraviolet multiple quantum wells grown on patterned AlN nucleation layer. <i>Journal of Alloys and Compounds</i> , 2021 , 861, 157589	5.7	
3	Heteroepitaxial EGa2O3 on Conductive Ceramic Templates: Toward Ultrahigh Gain Deep-Ultraviolet Photodetection (Adv. Mater. Technol. 9/2021). <i>Advanced Materials Technologies</i> , 2021 , 6, 2170052	6.8	
2	Optical Wavefront Detection: A Beginner Tutorial1-21		

LIST OF PUBLICATIONS

1	Harvesting Electricity by Harnessing Nature: Bioelectricity, Triboelectricity, and Method or Storage 1-25