Benjamin Edwards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/310406/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The 2013 European Seismic Hazard Model: key components and results. Bulletin of Earthquake Engineering, 2015, 13, 3553-3596.	2.3	407
2	Recent and future developments in earthquake ground motion estimation. Earth-Science Reviews, 2016, 160, 203-219.	4.0	142
3	A Model for Single-Station Standard Deviation Using Data from Various Tectonic Regions. Bulletin of the Seismological Society of America, 2013, 103, 3149-3163.	1.1	120
4	Automatic computation of moment magnitudes for small earthquakes and the scaling of local to moment magnitude. Geophysical Journal International, 2010, 183, 407-420.	1.0	90
5	A Stochastic Groundâ€Motion Model for Switzerland. Bulletin of the Seismological Society of America, 2013, 103, 78-98.	1.1	87
6	The Acquisition of Source, Path, and Site Effects from Microearthquake Recordings Using Q Tomography: Application to the United Kingdom. Bulletin of the Seismological Society of America, 2008, 98, 1915-1935.	1.1	85
7	Developing an Applicationâ€Specific Groundâ€Motion Model for Induced Seismicity. Bulletin of the Seismological Society of America, 2016, 106, 158-173.	1.1	84
8	Derivation of a Reference Shear-Wave Velocity Model from Empirical Site Amplification. Bulletin of the Seismological Society of America, 2011, 101, 258-274.	1.1	83
9	Development of a Response Spectral Groundâ€Motion Prediction Equation (GMPE) for Seismicâ€Hazard Analysis from Empirical Fourier Spectral and Duration Models. Bulletin of the Seismological Society of America, 2015, 105, 2192-2218.	1.1	83
10	Attenuation of seismic shear wave energy in Switzerland. Geophysical Journal International, 2011, 185, 967-984.	1.0	82
11	Empirical evidence of local seismic effects at sites with pronounced topography: a systematic approach. Geophysical Journal International, 2014, 197, 608-619.	1.0	82
12	Seismic monitoring and analysis of deep geothermal projects in St Gallen and Basel, Switzerland. Geophysical Journal International, 2015, 201, 1022-1039.	1.0	78
13	Predicting Ground Motion from Induced Earthquakes in Geothermal Areas. Bulletin of the Seismological Society of America, 2013, 103, 1875-1897.	1.1	76
14	Assessment of Site Effects in Alpine Regions through Systematic Site Characterization of Seismic Stations. Bulletin of the Seismological Society of America, 2014, 104, 2809-2826.	1.1	71
15	A Stochastic Earthquake Groundâ€Motion Prediction Model for the United Kingdom. Bulletin of the Seismological Society of America, 2013, 103, 57-77.	1.1	66
16	Framework for a Ground-Motion Model for Induced Seismic Hazard and Risk Analysis in the Groningen Gas Field, The Netherlands. Earthquake Spectra, 2017, 33, 481-498.	1.6	66
17	Scenario Dependence of Linear Siteâ€Effect Factors for Shortâ€Period Response Spectral Ordinates. Bulletin of the Seismological Society of America, 2017, 107, 2859-2872.	1.1	64
18	Determination of Site Amplification from Regional Seismicity: Application to the Swiss National Seismic Networks. Seismological Research Letters, 2013, 84, 611-621.	0.8	63

BENJAMIN EDWARDS

#	Article	IF	CITATIONS
19	Addressing limitations in existing â€~simplified' liquefaction triggering evaluation procedures: application to induced seismicity in the Groningen gas field. Bulletin of Earthquake Engineering, 2019, 17, 4539-4557.	2.3	50
20	Epistemic uncertainty and limitations of the <i>Ĵº</i> ₀ model for near-surface attenuation at hard rock sites. Geophysical Journal International, 2015, 202, 1627-1645.	1.0	46
21	A New Empirical Magnitude Scaling Relation for Switzerland. Bulletin of the Seismological Society of America, 2011, 101, 3088-3095.	1.1	45
22	New predictive equations and site amplification estimates for the next-generation Swiss ShakeMaps. Geophysical Journal International, 2014, 200, 421-438.	1.0	40
23	The Relationship between M and ML: A Review and Application to Induced Seismicity in the Groningen Gas Field, The Netherlands. Seismological Research Letters, 2018, 89, 1062-1074.	0.8	36
24	A Comparative Study on Attenuation and Source-Scaling Relations in the Kanto, Tokai, and Chubu Regions of Japan, Using Data from Hi-Net and KiK-Net. Bulletin of the Seismological Society of America, 2009, 99, 2435-2460.	1.1	33
25	Magnitude scaling of induced earthquakes. Geothermics, 2014, 52, 132-139.	1.5	33
26	Reference S-Wave Velocity Profile and Attenuation Models for Ground-Motion Prediction Equations: Application to Japan. Bulletin of the Seismological Society of America, 2013, 103, 2645-2656.	1.1	32
27	Characterizing the Vertical-to-Horizontal Ratio of Ground Motion at Soft-Sediment Sites. Bulletin of the Seismological Society of America, 2012, 102, 2741-2756.	1.1	29
28	Stochastic source, path and site attenuation parameters and associated variabilities for shallow crustal European earthquakes. Bulletin of Earthquake Engineering, 2017, 15, 4531-4561.	2.3	29
29	Measurements of stress parameter and site attenuation from recordings of moderate to large earthquakes in Europe and the Middle East. Geophysical Journal International, 2013, 194, 1190-1202.	1.0	25
30	Regionâ€5pecific Assessment, Adjustment, and Weighting of Groundâ€Motion Prediction Models: Application to the 2015 Swiss Seismicâ€Hazard Maps. Bulletin of the Seismological Society of America, 2016, 106, 1840-1857.	1.1	25
31	Earthquakes in Switzerland and surrounding regions during 2014. Swiss Journal of Geosciences, 2015, 108, 425-443.	0.5	24
32	Characterisation of ground motion recording stations in the Groningen gas field. Journal of Seismology, 2018, 22, 605-623.	0.6	24
33	A Predictive Equation for the Vertical-to-Horizontal Ratio of Ground Motion at Rock Sites Based on Shear-Wave Velocity Profiles from Japan and Switzerland. Bulletin of the Seismological Society of America, 2011, 101, 2998-3019.	1.1	23
34	Earthquakes in Switzerland and surrounding regions during 2011. Swiss Journal of Geosciences, 2012, 105, 463-476.	0.5	21
35	Bilinearity in the Gutenbergâ€Richter Relation Based on <scp><i>M</i></scp> _L for Magnitudes Above and Below 2, From Systematic Magnitude Assessments in Parkfield (California). Geophysical Research Letters, 2018, 45, 6887-6897.	1.5	20
36	Earthquakes in Switzerland and surrounding regions during 2009. Swiss Journal of Geosciences, 2010, 103, 535-549.	0.5	19

Benjamin Edwards

#	Article	IF	CITATIONS
37	Earthquakes in Switzerland and surrounding regions during 2012. Swiss Journal of Geosciences, 2013, 106, 543-558.	0.5	19
38	Simulations for the development of a ground motion model for induced seismicity in the Groningen gas field, The Netherlands. Bulletin of Earthquake Engineering, 2019, 17, 4441-4456.	2.3	19
39	Liquefaction Hazard in the Groningen Region of the Netherlands due to Induced Seismicity. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, 04020068.	1.5	18
40	Selecting ground-motion models developed for induced seismicity in geothermal areas. Geophysical Journal International, 2013, 195, 1314-1322.	1.0	17
41	Constraints on crustal attenuation and three-dimensional spatial distribution of stress drop in Switzerland. Geophysical Journal International, 2014, 196, 493-509.	1.0	17
42	Site amplification at the city scale in Basel (Switzerland) from geophysical site characterization and spectral modelling of recorded earthquakes. Physics and Chemistry of the Earth, 2017, 98, 27-40.	1.2	17
43	Dynamic and Probabilistic Multi-class Prediction of Tunnel Squeezing Intensity. Rock Mechanics and Rock Engineering, 2020, 53, 3521-3542.	2.6	17
44	The Potential of Highâ€Rate GPS for Strong Ground Motion Assessment. Bulletin of the Seismological Society of America, 0, , .	1.1	15
45	Developing a model for the prediction of ground motions due to earthquakes in the Groningen gas field. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2017, 96, s203-s213.	0.6	15
46	A Selection of GMPEs for the United Kingdom Based on Instrumental and Macroseismic Datasets. Bulletin of the Seismological Society of America, 2019, 109, 1378-1400.	1.1	13
47	Seismic Hazard and Risk Due to Induced Earthquakes at a Shale Gas Site. Bulletin of the Seismological Society of America, 2021, 111, 875-897.	1.1	13
48	Ground-motion networks in the Groningen field: usability and consistency of surface recordings. Journal of Seismology, 2019, 23, 1233-1253.	0.6	12
49	GITEC: A Generalized Inversion Technique Benchmark. Bulletin of the Seismological Society of America, 2022, 112, 850-877.	1.1	12
50	Earthquakes in Switzerland and surrounding regions during 2010. Swiss Journal of Geosciences, 2011, 104, 537-547.	0.5	11
51	Fitting Earthquake Spectra: Colored Noise and Incomplete Data. Bulletin of the Seismological Society of America, 2017, 107, 276-291.	1.1	11
52	1D-velocity structure and seismotectonics of the Ecuadorian margin inferred from the 2016 Mw7.8 Pedernales aftershock sequence. Tectonophysics, 2019, 767, 228165.	0.9	9
53	Toward Robust and Routine Determination of Mw for Small Earthquakes: Application to the 2020 MwÂ5.7 Magna, Utah, Seismic Sequence. Seismological Research Letters, 2021, 92, 725-740.	0.8	8
54	The frequency-size scaling of non-volcanic tremors beneath the San Andreas Fault at Parkfield: Possible implications for seismic energy release. Earth and Planetary Science Letters, 2019, 516, 77-107.	1.8	7

Benjamin Edwards

#	Article	IF	CITATIONS
55	Defining the usable bandwidth of weak-motion records: application to induced seismicity in the Groningen Gas Field, the Netherlands. Journal of Seismology, 2021, 25, 1043-1059.	0.6	7
56	Spatial distribution and energy release of nonvolcanic tremor at Parkfield, California. Journal of Geophysical Research: Solid Earth, 2016, 121, 8833-8854.	1.4	5
57	A comparative analysis of site-specific response spectral amplification models. Physics and Chemistry of the Earth, 2017, 98, 16-26.	1.2	5
58	Scenarioâ€Dependent Site Effects for the Determination of Unbiased Local Magnitude. Bulletin of the Seismological Society of America, 2019, 109, 2658-2673.	1.1	5
59	Erratum The Relationship between M and ML: A Review and Application to Induced Seismicity in the Groningen Gas Field, The Netherlands. Seismological Research Letters, 0, , .	0.8	5
60	Development of hazard- and amplification-consistent elastic design spectra. Soil Dynamics and Earthquake Engineering, 2019, 126, 105118.	1.9	5
61	The Influence of Earthquake Magnitude on Hazard Related to Induced Seismicity. Geotechnical, Geological and Earthquake Engineering, 2015, , 429-442.	0.1	5
62	Derivation of a near-surface damping model for the Groningen gas field. Geophysical Journal International, 2022, 230, 776-795.	1.0	4
63	Prediction of earthquake ground motion at rock sites in Japan: evaluation of empirical and stochastic approaches for the PEGASOS Refinement Project. Geophysical Journal International, 2017, 211, 766-783.	1.0	3
64	A Hybrid Empirical Green's Function Technique for Predicting Ground Motion from Induced Seismicity: Application to the Basel Enhanced Geothermal System. Geosciences (Switzerland), 2018, 8, 180.	1.0	2
65	Ranking and Selection of Earthquake Ground-Motion Models Using the Stochastic Area Metric. Seismological Research Letters, 2022, 93, 787-797.	0.8	2
66	Induced seismicity due to hydraulic fracturing near Blackpool, UK: source modeling and event detection. Journal of Seismology, 0, , 1.	0.6	1
67	Decision Making for Optimal Primary-Support Selection to Minimise Tunnel- Squeezing Risk. , 2020, , .		0