Bilal Omer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3103771/publications.pdf Version: 2024-02-01

RILAL OMED

#	Article	IF	CITATIONS
1	Off-the-Shelf Virus-Specific T Cells to Treat BK Virus, Human Herpesvirus 6, Cytomegalovirus, Epstein-Barr Virus, and Adenovirus Infections After Allogeneic Hematopoietic Stem-Cell Transplantation. Journal of Clinical Oncology, 2017, 35, 3547-3557.	1.6	367
2	Constitutive Signaling from an Engineered IL7 Receptor Promotes Durable Tumor Elimination by Tumor-Redirected T Cells. Cancer Discovery, 2017, 7, 1238-1247.	9.4	204
3	NK Cells Expressing a Chimeric Activating Receptor Eliminate MDSCs and Rescue Impaired CAR-T Cell Activity against Solid Tumors. Cancer Immunology Research, 2019, 7, 363-375.	3.4	180
4	Treatment of Acute Myeloid Leukemia with T Cells Expressing Chimeric Antigen Receptors Directed to C-type Lectin-like Molecule 1. Molecular Therapy, 2017, 25, 2202-2213.	8.2	109
5	CD70-specific CAR T cells have potent activity against acute myeloid leukemia without HSC toxicity. Blood, 2021, 138, 318-330.	1.4	98
6	Vaccination Targeting Native Receptors to Enhance the Function and Proliferation of Chimeric Antigen Receptor (CAR)-Modified T Cells. Clinical Cancer Research, 2017, 23, 3499-3509.	7.0	76
7	"Mini―bank of only 8 donors supplies CMV-directed T cells to diverse recipients. Blood Advances, 2019, 3, 2571-2580.	5.2	44
8	Comprehensive Approach for Identifying the T Cell Subset Origin of CD3 and CD28 Antibody–Activated Chimeric Antigen Receptor–Modified T Cells. Journal of Immunology, 2017, 199, 348-362.	0.8	41
9	T-Cell Receptor Stimulation Enhances the Expansion and Function of CD19 Chimeric Antigen Receptor–Expressing T Cells. Clinical Cancer Research, 2019, 25, 7340-7350.	7.0	32
10	Patterns of subsequent malignancies after <scp>H</scp> odgkin lymphoma in children and adults. British Journal of Haematology, 2012, 158, 615-625.	2.5	28
11	Early transduction produces highly functional chimeric antigen receptor-modified virus-specific T-cells with central memory markers: a Production Assistant for Cell Therapy (PACT) translational application. , 2015, 3, 5.		27
12	A New Method for Reactivating and Expanding T Cells Specific for Rhizopus oryzae. Molecular Therapy - Methods and Clinical Development, 2018, 9, 305-312.	4.1	24
13	Outcomes after Allogeneic Transplant in Patients with Wiskott-Aldrich Syndrome. Biology of Blood and Marrow Transplantation, 2018, 24, 537-541.	2.0	21
14	Current Allogeneic Hematopoietic Stem Cell Transplantation for Pediatric Acute Lymphocytic Leukemia: Success, Failure and Future Perspectives—A Single-Center Experience, 2008 to 2016. Biology of Blood and Marrow Transplantation, 2018, 24, 1424-1431.	2.0	15
15	Long-term follow-up for the development of subsequent malignancies in patients treated with genetically modified IECs. Blood, 2022, 140, 16-24.	1.4	14
16	Donor-derived multiple leukemia antigen–specific T-cell therapy to prevent relapse after transplantÂin patients with ALL. Blood, 2022, 139, 2706-2711.	1.4	13
17	Chimeric Antigen Receptor Signaling Domains Differentially Regulate Proliferation and Native T Cell Receptor Function in Virus-Specific T Cells. Frontiers in Medicine, 2018, 5, 343.	2.6	12
18	Allogeneic hematopoietic stem cell transplant for relapsed and refractory non-Hodgkin lymphoma in pediatric patients. Blood Advances, 2019, 3, 2689-2695.	5.2	9

BILAL OMER

#	Article	IF	CITATIONS
19	Matched related hematopoietic cell transplant for sickle cell disease with alemtuzumab: the Texas Children's Hospital experience. Bone Marrow Transplantation, 2021, 56, 2797-2803.	2.4	6
20	Intravesicular Cidofovir for BK Hemorrhagic Cystitis in Pediatric Patients after Hematopoietic Stem Cell Transplant. Biology of Blood and Marrow Transplantation, 2016, 22, S163-S164.	2.0	3
21	Excellent Outcomes for Pediatric Non-Malignant Diseases Using Umbilical Cord Blood Transplantation (UCBT) Conditioned without Serotherapy in the Absence of a Matched Related Donor. Biology of Blood and Marrow Transplantation, 2019, 25, S13.	2.0	3
22	Administration of Most Closely HLA-Matched Multivirus-Specific T Cells for the Treatment of EBV, CMV, AdV, HHV6, and BKV Post Allogeneic Hematopoietic Stem Cell Transplant. Blood, 2016, 128, 501-501.	1.4	2
23	Respiratory Viral Infections after Hematopoietic Stem Cell Transplants : The Texas Children's Hospital Experience. Biology of Blood and Marrow Transplantation, 2016, 22, S256-S257.	2.0	1
24	Safety and Preliminary Efficacy of "Ready to Administer" Cytomegalovirus (CMV)-Specific T Cells for the Treatment of Patients with Refractory CMV Infection. Blood, 2016, 128, 388-388.	1.4	1
25	Treatment of Severe, Drug-Refractory Viral Infections with Allogeneic, Off-the-Shelf Multi-Virus Specific T Cells in Patients Following HSCT: Results from a Phase 2 Study. Blood, 2020, 136, 2-3.	1.4	1
26	Outcome after Stem Cell Transplant in Patients with Dyskeratosis Congenita. Biology of Blood and Marrow Transplantation, 2014, 20, S178-S179.	2.0	0
27	Outcomes after Matched Unrelated Donor Stem Cell Transplantation in Chronic Granulomatous Disease – an Update. Biology of Blood and Marrow Transplantation, 2016, 22, S378.	2.0	0
28	IVIG Prophylaxis in Pediatric Patients Undergoing Hematopoietic Stem Cell Transplant: A Retrospective Analysis of Monthly Intravenous Immunoglobulin Infusion vs. IgG Level Based Dosing. Biology of Blood and Marrow Transplantation, 2016, 22, S244.	2.0	0
29	Adoptively-Transferred Epstein-Barr Virus (EBV)-Specific T Cells to Prevent or Treat EBV-Related Lymphoproliferative Disease in Allogeneic Hematopoietic Stem Cell Transplantation (HSCT) Recipients - a Single Center Experience Spanning 22 Years. Biology of Blood and Marrow Transplantation, 2016, 22, S156-S157.	2.0	0
30	Allogeneic Hematopoietic Cell Transplant Following Crizotinib Monotherapy for Relapsed/Refractory Anaplastic Large Cell Lymphoma. Biology of Blood and Marrow Transplantation, 2017, 23, S281.	2.0	0
31	The Use of Donor Lymphocyte Infusions As Prophylaxis and Treatment for Relapse in Children Post Hematopoietic Cell Transplant for Malignant Disease: A Single Institution Experience. Biology of Blood and Marrow Transplantation, 2017, 23, S372-S373.	2.0	0
32	Umbilical Cord Blood Transplantation Conditioned without Serotherapy is an Excellent Curative Alternative for Pediatric Non-Malignant Diseases. Biology of Blood and Marrow Transplantation, 2017, 23, S241.	2.0	0
33	Administration of Banked, 3rd Party Multivirus-Specific T Cells to Treat Drug-Refractory EBV, CMV, AdV, HHV6, and BKV Infections in Allogeneic Hematopoietic Stem Cell Transplant Recipients. Biology of Blood and Marrow Transplantation, 2017, 23, S58-S59.	2.0	0
34	Outcomes after Allogeneic Stem Cell Transplant for Pediatric Patients with Acute Lymphoblastic Leukemia and CNS Involvement. Biology of Blood and Marrow Transplantation, 2019, 25, S118-S119.	2.0	0
35	Administration of Most Closely HLA-Matched Multivirus-Specific T Cells for the Treatment of EBV, CMV, AdV, HHV6, and BKV Post Allogeneic Hematopoietic Stem Cell Transplant. Blood, 2015, 126, 622-622.	1.4	0
36	Adoptively-Transferred EBV-Specific T Cells to Prevent or Treat EBV-Related Lymphoproliferative Disease in Allogeneic HSCT Recipients - a Single Center Experience Spanning 22 Years. Blood, 2015, 126, 1926-1926.	1.4	0

#	Article	IF	CITATIONS
37	Abstract IA22: Immunotherapy with virus-specific T cells. , 2016, , .		0
38	Donor-Derived Adoptive T-Cell Therapy Targeting Multiple Tumor Associated Antigens to Prevent Post-Transplant Relapse in Patients with ALL. Blood, 2021, 138, 471-471.	1.4	0