Joachim Burgdörfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3103651/publications.pdf

Version: 2024-02-01

243 papers

8,505 citations

41258 49 h-index 83 g-index

249 all docs

249 docs citations

times ranked

249

6616 citing authors

#	Article	IF	CITATIONS
1	Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction. Nano Letters, 2014, 14, 4785-4791.	4.5	943
2	Above-surface neutralization of highly charged ions: The classical over-the-barrier model. Physical Review A, 1991, 44, 5674-5685.	1.0	474
3	Attosecond chronoscopy of photoemission. Reviews of Modern Physics, 2015, 87, 765-802.	16.4	326
4	What will it take to observe processes in 'real time'?. Nature Photonics, 2014, 8, 162-166.	15.6	220
5	The Multiradical Character of One―and Twoâ€Dimensional Graphene Nanoribbons. Angewandte Chemie - International Edition, 2013, 52, 2581-2584.	7.2	197
6	Graphene quantum dots: Beyond a Dirac billiard. Physical Review B, 2009, 79, .	1.1	170
7	Intracycle and intercycle interferences in above-threshold ionization: The time grating. Physical Review A, 2010, 81, .	1.0	153
8	Time Resolved Fano Resonances. Physical Review Letters, 2005, 94, 023002.	2.9	140
9	<i>Ab initio</i> multiscale simulation of high-order harmonic generation in solids. Physical Review A, 2018, 97, .	1.0	137
10	Attosecond Probe of Valence-Electron Wave Packets by Subcycle Sculpted Laser Fields. Physical Review Letters, 2012, 108, 193004.	2.9	131
11	Excitation ionization and double ionization of helium by high-energy photon impact. Physical Review Letters, 1993, 71, 50-53.	2.9	105
12	Attosecond Streaking of Correlated Two-Electron Transitions in Helium. Physical Review Letters, 2012, 108, 163001.	2.9	104
13	Coulomb-Volkov approximation for near-threshold ionization by short laser pulses. Physical Review A, 2008, 77, .	1.0	102
14	<i>AbÂlnitio</i> Simulation of Electrical Currents Induced by Ultrafast Laser Excitation of Dielectric Materials. Physical Review Letters, 2014, 113, 087401.	2.9	100
15	Modular recursive Green's function method for ballistic quantum transport. Physical Review B, 2000, 62, 1950-1960.	1.1	94
16	Electrostatically Confined Monolayer Graphene Quantum Dots with Orbital and Valley Splittings. Nano Letters, 2016, 16, 5798-5805.	4.5	93
17	Time-resolved photoemission on the attosecond scale: opportunities and challenges. Faraday Discussions, 2013, 163, 353.	1.6	90
18	Image acceleration of multiply charged ions by metallic surfaces. Physical Review A, 1993, 47, R20-R22.	1.0	88

#	Article	IF	CITATIONS
19	Attosecond physics phenomena at nanometric tips. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 172001.	0.6	88
20	Time double-slit interferences in strong-field tunneling ionization. Physical Review A, 2006, 74, .	1.0	87
21	Localized Intervalley Defect Excitons as Single-Photon Emitters in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>WSe</mml:mi></mml:mrow><mml:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl< td=""><td>ımlimn>2<</td><td>:/mml:mn><!--</td--></td></mpl<></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	ımlimn>2<	:/mml:mn> </td
22	Attosecond optoelectronic field measurement in solids. Nature Communications, 2020, 11, 430.	5.8	81
23	Above-surface neutralization of slow highly charged ions in front of ionic crystals. Physical Review A, 1997, 55, 2097-2108.	1.0	74
24	Time delays for attosecond streaking in photoionization of neon. Physical Review A, 2014, 89, .	1.0	73
25	Time-dependent complete-active-space self-consistent-field method for atoms: Application to high-order harmonic generation. Physical Review A, 2016, 94, .	1.0	73
26	Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip. Physical Review Letters, 2016, 117, 217601.	2.9	73
27	Interaction of charged particles with insulating capillary targets – The guiding effect. Progress in Surface Science, 2013, 88, 237-278.	3.8	70
28	Theory of resonant charge transfer in ion-surface collisions at grazing incidence at intermediate velocities. Physical Review A, 1987, 35, 4963-4976.	1.0	69
29	Electron rescattering at metal nanotips induced by ultrashort laser pulses. Physical Review B, 2012, 86, .	1.1	68
30	Formation of very-low-energy states crossing the ionization threshold of argon atoms in strong mid-infrared fields. Physical Review A, $2014, 90, .$	1.0	67
31	Electron transport in the presence of a Coulomb field. Physical Review A, 1990, 42, 1206-1221.	1.0	64
32	Low-energy peak structure in strong-field ionization by midinfrared laser pulses: Two-dimensional focusing by the atomic potential. Physical Review A, 2012, 85, .	1.0	64
33	Calculation of resonances in doubly excited helium using the stabilization method. Physical Review A, 1994, 49, 2470-2475.	1.0	63
34	Diffraction at a time grating in above-threshold ionization: The influence of the Coulomb potential. Physical Review A, 2010, 82, .	1.0	63
35	Probing Decoherence through Fano Resonances. Physical Review Letters, 2010, 105, 056801.	2.9	63
36	Large optical field enhancement for nanotips with large opening angles. New Journal of Physics, 2015, 17, 063010.	1,2	62

#	Article	IF	Citations
37	Sub-Poissonian angular momentum distribution near threshold in atomic ionization by short laser pulses. Physical Review A, 2008, 78, .	1.0	60
38	Interaction of ultrashort laser pulses with metal nanotips: a model system for strong-field phenomena. New Journal of Physics, 2012, 14, 085019.	1.2	60
39	Photoionization of helium by attosecond pulses: Extraction of spectra from correlated wave functions. Physical Review A, 2013, 87, .	1.0	60
40	Atomic resonances of hydrogen near aluminum surfaces:mAdiabatic evolution of the ground state. Physical Review A, 1997, 55, 466-478.	1.0	58
41	Large tunable valley splitting in edge-free graphene quantum dots on boron nitride. Nature Nanotechnology, 2018, 13, 392-397.	15.6	58
42	Excitation-ionization and double ionization of helium by Compton scattering. Physical Review A, 1994, 50, R2810-R2813.	1.0	57
43	Time delays from one-photon transitions in the continuum. Optica, 2020, 7, 154.	4.8	57
44	A comparison of singlet and triplet states for one- and two-dimensional graphene nanoribbons using multireference theory. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	56
45	High-harmonic generation in graphene: Interband response and the harmonic cutoff. Physical Review B, 2017, 95, .	1.1	55
46	Production of High-Angular-Momentum Rydberg States by Stochastic Collisions. Physical Review Letters, 1988, 61, 2917-2920.	2.9	54
47	Torus quantization of symmetrically excited helium. Physical Review A, 1992, 45, 1471-1478.	1.0	53
48	Fast neutralization of highly charged ions in grazing incidence collisions with surfaces. Nuclear Instruments & Methods in Physics Research B, 1995, 98, 415-419.	0.6	53
49	Roadmap on photonic, electronic and atomic collision physics: I. Light–matter interaction. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 171001.	0.6	52
50	Influence of the linear Stark effect on electron capture into fully stripped ions. Physical Review A, 1981, 24, 1756-1767.	1.0	51
51	Laser-Cluster Interaction: X-Ray Production by Short Laser Pulses. Physical Review Letters, 2006, 96, 013203.	2.9	50
52	Statistical multipoles for cusp electrons and Rydberg electrons. Physical Review A, 1986, 33, 1578-1589.	1.0	48
53	Geometry-dependent scattering through Ballistic microstructures: Semiclassical theory beyond the stationary-phase approximation. Physical Review B, 1997, 56, 7589-7597.	1.1	48
54	Multiple-Scattering Approach to Coherent Excitation in Electron-Capture Collisions. Physical Review Letters, 1984, 52, 2225-2228.	2.9	46

#	Article	IF	CITATIONS
55	Wave chaos as signature for depletion of a Bose-Einstein condensate. Physical Review A, 2012, 86, .	1.0	46
56	Doubly differential diffraction at a time grating in above-threshold ionization: Intracycle and intercycle interferences. Nuclear Instruments & Methods in Physics Research B, 2012, 279, 24-30.	0.6	46
57	Double photoionization of helium from threshold to high energies. Physical Review A, 1998, 57, R1489-R1492.	1.0	45
58	Theory of thel-state population of Rydberg states formed in ion-solid collisions. Physical Review A, 1991, 44, 2993-3000.	1.0	44
59	<mml:math< p=""> xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>F</mml:mi>center in lithium fluoride revisited: Comparison of solid-state physics and quantum-chemistry approaches. Physical Review B. 2014, 89.</mml:math<>	1.1	43
60	Interference of electron wave packets in atomic ionization by subcycle sculpted laser pulses. Physical Review A, 2014, 89, .	1.0	42
61	Theory of Subcycle Linear Momentum Transfer in Strong-Field Tunneling Ionization. Physical Review Letters, 2020, 125, 073202.	2.9	42
62	Above-surface potential sputtering of protons by highly charged ions. Physical Review A, 1996, 54, 4140-4144.	1.0	39
63	Angular distribution in two-photon double ionization of helium by intense attosecond soft-x-ray pulses. Physical Review A, 2006, 73, .	1.0	39
64	Coincidence spectroscopy of high-lying Rydberg states produced in strong laser fields. Physical Review A, 2016, 94, .	1.0	39
65	Topologically Nontrivial Valley States in Bilayer Graphene Quantum Point Contacts. Physical Review Letters, 2018, 121, 257702.	2.9	39
66	Quantum conductance fluctuations and classical short-path dynamics. Physical Review B, 1995, 51, 2013-2016.	1.1	38
67	Theoretical description of fast kinetic electron emission in ion-surface collisions. Physical Review A, 1997, 55, 450-465.	1.0	38
68	Half-collision model for multiple ionization by photon impact. Physical Review A, 2001, 64, .	1.0	38
69	Propagating two-particle reduced density matrices without wave functions. Physical Review A, 2015, 91, .	1.0	38
70	Classical-quantum correspondence in atomic ionization by midinfrared pulses: Multiple peak and interference structures. Physical Review A, 2013, 87, .	1.0	35
71	Dynamical image charge effects on convoy electron emission from solid surfaces. Nuclear Instruments & Methods in Physics Research B, 1987, 24-25, 139-142.	0.6	34
72	Electron loss at backward observation angles. Physical Review A, 1991, 44, 7243-7251.	1.0	34

#	Article	IF	CITATIONS
73	Dynamic interference as signature of atomic stabilization. Optics Express, 2018, 26, 19921.	1.7	34
74	Rainbow Scattering of Convoy Electrons near Surfaces. Physical Review Letters, 1994, 73, 2508-2511.	2.9	33
75	Dynamic screening and wake effects on electronic excitation in ion-solid and ion-surface collisions. Nuclear Instruments & Methods in Physics Research B, 1992, 67, 1-10.	0.6	32
76	Half-collision model for triple photoionization of lithium. Physical Review A, 2001, 63, .	1.0	32
77	Nonlinear response of graphene to a few-cycle terahertz laser pulse: Role of doping and disorder. Physical Review B, 2016, 94, .	1.1	32
78	Accurate calculation of atomic resonances near surfaces. Nuclear Instruments & Methods in Physics Research B, 1995, 100, 336-341.	0.6	31
79	Shot Noise in the Chaotic-to-Regular Crossover Regime. Physical Review Letters, 2005, 94, 216801.	2.9	31
80	Attosecond streaking of Cohen-Fano interferences in the photoionization of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mrow><mml:mi mathvariant="normal">H</mml:mi></mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo><td>p> 1,0 p> <td>3<u>1</u> nath>.</td></td></mml:msubsup></mml:math>	p> 1,0 p> <td>3<u>1</u> nath>.</td>	3 <u>1</u> nath>.
81	Liouville master equation for multielectron dynamics: Neutralization of highly charged ions near a LiF surface. Physical Review A, 2003, 67, .	1.0	30
82	Effect of pulse duration on the x-ray emission from Ar clusters in intense laser fields. Physical Review A, 2008, 78 , .	1.0	30
83	Wave chaos in the nonequilibrium dynamics of the Gross-Pitaevskii equation. Physical Review A, 2011 , 83 , .	1.0	30
84	Band Nesting in Two-Dimensional Crystals: An Exceptionally Sensitive Probe of Strain. Nano Letters, 2020, 20, 4242-4248.	4.5	30
85	Distorted-wave methods for electron capture in ion-atom collisions. Physical Review A, 1986, 33, 2959-2969.	1.0	28
86	Calculation of Langmuir states in doubly excited helium. Physical Review Letters, 1993, 70, 2375-2378.	2.9	28
87	Simulation of electron transport through a quantum dot with soft walls. Physical Review B, 2005, 72,	1.1	28
88	High-harmonic spectra from time-dependent two-particle reduced-density-matrix theory. Physical Review A, 2017, 95, .	1.0	28
89	Distance of Excited-State Formation in Ion-Surface Collisions. Physical Review Letters, 1986, 57, 2649-2652.	2.9	27
90	Calculating state-to-state transition probabilities within time-dependent density-functional theory. Physical Review A, 2006, 74, .	1.0	27

#	Article	lF	Citations
91	Localizing high-lying Rydberg wave packets with two-color laser fields. Physical Review A, 2017, 96, .	1.0	27
92	Two-Electron Interference in Strong-Field Ionization of He by a Short Intense Extreme Ultraviolet Laser Pulse. Physical Review Letters, 2020, 124, 043203.	2.9	26
93	Simulation of convoy-electron emission. Physical Review A, 1992, 45, R2655-R2658.	1.0	25
94	Forward electron production in antimatter-solid collisions. Physical Review Letters, 1989, 62, 1599-1602.	2.9	24
95	Probing the influence of the Coulomb field on atomic ionization by sculpted two-color laser fields. New Journal of Physics, 2013, 15, 043050.	1.2	24
96	Simulation of excited-state formation of hydrogen in transmission of relativisticHâ [^] ions through thin foils. Physical Review A, 1996, 53, 3189-3200.	1.0	23
97	Quantum-trajectory Monte Carlo method for internal-state evolution of fast ions traversing amorphous solids. Physical Review A, 2003, 67, .	1.0	23
98	Electron Emission from Insulators Irradiated by Slow Highly Charged Ions. E-Journal of Surface Science and Nanotechnology, 2008, 6, 54-59.	0.1	23
99	Measurements of the hydrogen 2s-2pcoherence using the quantum-beat technique. Physical Review A, 1988, 37, 4111-4117.	1.0	22
100	lonization spectrum for ion-atom collisions with zero-ranged potentials in one and three dimensions. Physical Review A, 1991, 43, 4036-4039.	1.0	22
101	Quantum control of electron localization in molecules driven by trains of half-cycle pulses. New Journal of Physics, 2009, 11, 105035.	1.2	22
102	Quantum phase-space analysis of electronic rescattering dynamics in intense few-cycle laser fields. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 055002.	0.6	22
103	Controlling ultrafast currents by the nonlinear photogalvanic effect. New Journal of Physics, 2015, 17, 123026.	1.2	22
104	High visibility in two-color above-threshold photoemission from tungsten nanotips in a coherent control scheme. Journal of Modern Optics, 2017, 64, 1054-1060.	0.6	22
105	Incorporating decoherence into solid-state time-dependent density functional theory. Physical Review B, 2019, 99, .	1.1	22
106	ATOMIC COLLISIONS WITH SURFACES. , 1993, , 517-614.		22
107	Inverted Cusps in Electron Spectra near Zero Velocity in an Attractive Coulomb Field. Physical Review Letters, 1983, 51, 374-377.	2.9	21
108	Dynamical thresholds for the existence of excited electronic states of fast ions in solids. Physical Review A, 1991, 43, 6027-6031.	1.0	21

#	Article	IF	Citations
109	The kicked rydberg atom: Regular and stochastic motion. Nuclear Instruments & Methods in Physics Research B, 1989, 42, 500-507.	0.6	20
110	Electron-electron interaction and two-center effects in projectile ionization at backward emission angles. Physical Review A, 1992, 45, 4507-4518.	1.0	20
111	Classical and quantum dynamics of the impulsively driven hydrogen atom. Nuclear Instruments & Methods in Physics Research B, 1993, 79, 109-113.	0.6	20
112	Semiclassical theory of elastic electron-atom scattering. Physical Review A, 1995, 51, 1248-1252.	1.0	20
113	Statistics of magnetoconductance in ballistic cavities. Physical Review B, 1995, 52, 8219-8225.	1.1	20
114	Semiclassical theory for transmission through open billiards: Convergence towards quantum transport. Physical Review E, 2003, 67, 016206.	0.8	20
115	Siegert-pseudostate representation of quantal time evolution: A harmonic oscillator kicked by periodic pulses. Physical Review A, 2001, 63, .	1.0	19
116	Quantum localization in the three-dimensional kicked Rydberg atom. Physical Review A, 2003, 68, .	1.0	19
117	Enhancement of Low Energy Electron-Ion Recombination in a Magnetic Field: Influence of Transient Field Effects. Physical Review Letters, 2005, 95, 243201.	2.9	19
118	Ï2electron emission in ion-atom collisions with short-range potentials. Physical Review A, 1988, 38, 4919-4922.	1.0	18
119	Parametric variation of resonances for regular and chaotic scattering. Chaos, Solitons and Fractals, 1995, 5, 1235-1273.	2.5	18
120	Gauge-invariant theory for semiclassical magnetotransport through ballistic microstructures. Physical Review B, 1999, 59, 2956-2967.	1.1	18
121	Electron capture and electron transport by fast ions penetrating solids: An open quantum system approach with sources and sinks. Physical Review A, 2007, 75, .	1.0	18
122	Accurate modeling of defects in graphene transport calculations. Physical Review B, 2018, 97, .	1.1	18
123	Parametric correlations and diffusion in quantum spectra. Physical Review A, 1992, 46, 2295-2303.	1.0	17
124	Interference oscillations in ionization of extreme Stark states by half-cycle pulses. Physical Review A, 1995, 51, R3410-R3413.	1.0	17
125	<i>Ab initio</i> perspective on the Mollwo-Ivey relation for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>F</mml:mi></mml:mrow></mml:math>	nath⊅cent	er 1 7
126	Interaction of Highly Charged Ions with Surfaces. Australian Journal of Physics, 1996, 49, 527.	0.6	17

#	Article	IF	Citations
127	Fano resonances and decoherence in transport through quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 29, 325-333.	1.3	16
128	Application of norm-conserving pseudopotentials to intense laser-matter interactions. Physical Review A, 2015, 92, .	1.0	16
129	Anomalous Fano Profiles in External Fields. Physical Review Letters, 2015, 115, 243001.	2.9	16
130	Coherence, alignment and orientation in ion-atom collisions. Nuclear Instruments & Methods in Physics Research B, 1985, 10-11, 198-203.	0.6	15
131	Magnetic-Field Effect in High-Order Above-Threshold Ionization. Physical Review Letters, 2022, 128, 023201.	2.9	15
132	Novel adiabatic invariant for the threeâ€body Coulomb problem. Journal of Chemical Physics, 1995, 103, 4985-4989.	1.2	14
133	Excitation - ionization by photoabsorption at low and intermediate energies. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, L523-L529.	0.6	14
134	Classical dynamics of enhanced low-energy electron-ion recombination in storage rings. Physical Review A, 2006, 74, .	1.0	14
135	Shakeoff induced by fast charged projectiles. Physical Review A, 1990, 42, 655-658.	1.0	13
136	Molecular-dynamics approach to the statistical properties of energy levels. Physical Review Letters, 1991, 66, 982-985.	2.9	13
137	Pseudopath semiclassical approximation to transport through open quantum billiards: Dyson equation for diffractive scattering. Physical Review E, 2005, 72, 036223.	0.8	13
138	Diffractive paths for weak localization in quantum billiards. Physical Review B, 2008, 77, .	1.1	13
139	Probing time-ordering in two-photon double ionization of helium on the attosecond time scale. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 061002.	0.6	13
140	Statistics of transmission eigenvalues in two-dimensional quantum cavities: Ballistic versus stochastic scattering. Physical Review B, 2007, 75, .	1.1	12
141	Long-time expansion of a Bose-Einstein condensate: Observability of Anderson localization. Physical Review A, 2017, 96, .	1.0	12
142	Enhancing Autler-Townes splittings by ultrafast XUV pulses. Physical Review Research, 2021, 3, .	1.3	12
143	Quantum transport of the internal state of Kr35+ions through amorphous carbon foils. Physical Review A, 2002, 65, .	1.0	11
144	Single and double ionization of helium in heavy-ion impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 1001-1013.	0.6	11

#	Article	IF	CITATIONS
145	Transport through open quantum dots: Making semiclassics quantitative. Physical Review B, 2010, 81, .	1.1	11
146	Semiclassical wave functions for open quantum billiards. Physical Review E, 2013, 88, 022916.	0.8	11
147	Elastic scattering of a Bose-Einstein condensate at a potential landscape. Journal of Physics: Conference Series, 2014, 488, 012032.	0.3	11
148	Polarization tagging of two-photon double ionization by elliptically polarized XUV pulses. Physical Review A, 2019, 99, .	1.0	11
149	Statistics of avoided crossings for generic quantum systems. Physical Review A, 1993, 48, 83-87.	1.0	10
150	Quantum control of electron wave packets in bound molecules by trains of half-cycle pulses. Physical Review A, 2011, 84, .	1.0	10
151	Theory of bound-state coherences generated and probed by optical attosecond pulses. Physical Review A, 2020, 101, .	1.0	10
152	Regular and chaotic motion of classical electrons in the wake potential of fast ions in solids. Physical Review A, 1990, 41, 4903-4912.	1.0	9
153	Energy gain of highly charged ions in front of LiF. Nuclear Instruments & Methods in Physics Research B, 1997, 125, 133-137.	0.6	9
154	Vanishing gap in LiF for electronic excitations by slow antiprotons. Physical Review B, 2009, 79, .	1.1	9
155	Adiabatic evolution of the H(1s) resonance near an aluminium surface. Nuclear Instruments & Methods in Physics Research B, 1996, 115, 152-156.	0.6	8
156	One- and two-electron emission from by high-energy photons. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, L689-L695.	0.6	8
157	Potential-energy surfaces for charge exchange between singly charged ions and a LiF surface. Physical Review A, 2003, 68, .	1.0	8
158	Nonunitary quantum trajectory Monte Carlo method for open quantum systems. Physical Review A, 2005, 71, .	1.0	8
159	lonization of Rydberg atoms by half-cycle pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 377-377.	0.6	8
160	Signatures of stabilization in the angle-resolved photoemission by an ultrashort intense XUV laser pulse. Physical Review A, 2022, 105, .	1.0	8
161	Coherence and correlation in doubly excited heliumlike atoms. Physical Review A, 1988, 38, 5520-5538.	1.0	7
162	Ellipsoidal angular distribution of electrons emitted from Rydberg atoms. Physical Review A, 1993, 48, R3414-R3417.	1.0	7

#	Article	IF	CITATIONS
163	Periodic-orbit spectra of hydrogen and helium. Physical Review A, 1996, 54, 1922-1935.	1.0	7
164	Vertical incidence of slow Ne10+ ions on an LiF surface: Suppression of the trampoline effect. Nuclear Instruments & Methods in Physics Research B, 2001, 182, 36-40.	0.6	7
165	Quantum localization in the high-frequency limit. Physical Review A, 2002, 66, .	1.0	7
166	Enhancement of Low-Energy Electron Ion Recombination in a Magnetic Field. Hyperfine Interactions, 2003, 146/147, 13-17.	0.2	7
167	Total and angular differential cross sections of electrons emitted in collision between antiprotons and helium atoms. Radiation Physics and Chemistry, 2007, 76, 495-498.	1.4	7
168	Angle-resolved time delays for shake-up ionization of helium. Physical Review A, 2020, 102, .	1.0	7
169	Towards the complete phase profiling of attosecond wave packets. Physical Review Research, 2021, 3, .	1.3	7
170	Transport theory for convoy electrons and Rydberg electrons in solids. , 1988, , 344-361.		7
171	Group-theoretical approach to final-state angular correlations in double photoionization of helium. Physical Review A, 1999, 59, 2738-2743.	1.0	6
172	Interaction of highly charged ions with insulator surfaces at low velocities: Estimates for Auger rates. Nuclear Instruments & Methods in Physics Research B, 2003, 205, 690-699.	0.6	6
173	Multi-electron dynamics for neutralization of highly charged ions near surfaces. Vacuum, 2004, 73, 3-7.	1.6	6
174	Determination of Compton profiles at solid surfaces from first-principles calculations. Physical Review B, 2007, 75, .	1.1	6
175	Recent Advances in Computational Methods for the Solution of the Time-Dependent Schr \tilde{A} ¶dinger Equation for the Interaction of Short, Intense Radiation with One and Two Electron Systems. , 2011, , 149-208.		6
176	Above-surface neutralization of highly charged ions: The formation of hollow atoms. Physica Scripta, 1993, T46, 225-230.	1.2	5
177	Non-retracing orbits in Andreev billiards. Physical Review B, 2006, 73, .	1.1	5
178	Oscillations in the magnetoconductance autocorrelation function for ballistic microstructures. Physical Review B, 1998, 57, 9875-9878.	1.1	4
179	Comment on "Dynamic range of nanotube- and nanowire-based electromechanical systems―[Appl. Phys. Lett. 86, 223105 (2005)]. Applied Physics Letters, 2006, 88, 036101.	1.5	4
180	Protocol for observing molecular dipole excitations by attosecond self-streaking. Physical Review A, 2015, 92, .	1.0	4

#	Article	IF	CITATIONS
181	Signatures of tunneling and multiphoton ionization by short-laser pulses: The partial-wave distribution. Journal of Physics: Conference Series, 2015, 635, 012003.	0.3	4
182	Transport through graphene nanoribbons: Suppression of transverse quantization by symmetry breaking. Physica Status Solidi (B): Basic Research, 2016, 253, 2366-2372.	0.7	4
183	Observing electron-correlation features in two-photon double ionization of helium. Physical Review A, 2017, 96, .	1.0	4
184	Theoretical Concepts and Methods for Electron Emission from Solid Surfaces. , 2007, , 1-38.		4
185	Semiclassical and quantal eigenenergies in the wake potential. Chemical Physics Letters, 1991, 178, 60-64.	1.2	3
186	Periodic orbit spectra of simple atoms. , 1997, , 304-338.		3
187	Excitation energy and pair correlation function of trions near an LiF surface. Physical Review B, 2008, 78, .	1.1	3
188	Density matrix description of collisional electron transfer into the continuum of ionic projectiles. Lecture Notes in Physics, 1984, , 32-51.	0.3	3
189	Final-state angular momentum distributions in charge transfer collisions at high energies. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1985, 240, 519-526.	0.7	2
190	Electron capture into Rydberg states in collisions between multiply charged ions and hydrogen. Nuclear Instruments & Methods in Physics Research B, 1985, 9, 392-396.	0.6	2
191	High l-state population in O7+ produced in ion—solid collisions. Nuclear Instruments & Methods in Physics Research B, 1992, 67, 168-171.	0.6	2
192	Enhancement of low energy electron–ion recombination in a magnetic field: Influence of transient field effects. Nuclear Instruments & Methods in Physics Research B, 2005, 235, 290-295.	0.6	2
193	Interaction of ultra-short laser pulses with clusters: short-time dynamics of a nano-plasma. AIP Conference Proceedings, 2006, , .	0.3	2
194	Occupation of fine-structure states in electron capture and transport. Physical Review A, 2008, 77, .	1.0	2
195	Watching the emergence of a Fano resonance in doubly excited helium. Journal of Physics: Conference Series, 2017, 875, 012010.	0.3	2
196	60 years of attosecond physics at ICPEAC: from collisions to ultrashort pulses. Journal of Physics: Conference Series, 2020, 1412, 022001.	0.3	2
197	Mechanisms for $\hat{l}^1\!\!/_2\!\!/_2$ electron emission in ion-atom collisions. Nuclear Instruments & Methods in Physics Research B, 1989, 40-41, 65-69.	0.6	1
198	Transport of fast electrons near surfaces. Nuclear Instruments & Methods in Physics Research B, 1996, 115, 233-236.	0.6	1

#	Article	IF	Citations
199	On the utility of atomic collision physics. Nuclear Instruments & Methods in Physics Research B, 1997, 124, 151-159.	0.6	1
200	Evidence of collisional coherences in the transport of hydrogenic krypton through amorphous carbon foils. Nuclear Instruments & Methods in Physics Research B, 2002, 193, 79-84.	0.6	1
201	Non-unitary master equation for the internal state of ions traversing solids. Nuclear Instruments & Methods in Physics Research B, 2005, 230, 7-11.	0.6	1
202	Cluster-laser interaction: fast production of hot electrons by short laser pulses. Nuclear Instruments & Methods in Physics Research B, 2005, 235, 210-215.	0.6	1
203	Quantum path interference in the wavelength dependence of high-harmonic generation. , 2008, , .		1
204	The time-dependent two-particle reduced density matrix method: LiH in strong laser fields. Journal of Physics: Conference Series, 2015, 635, 112084.	0.3	1
205	Atomic Scattering at Surfaces. , 2002, , 1081-1098.		1
206	Transient field-resolved reflectometry at 50-100 THz. Optica, 0, , .	4.8	1
207	Forward Electron Production in Antimatter-Solid Collisions. Physical Review Letters, 1989, 62, 2570-2570.	2.9	0
208	Convoy electron emission from surfaces. Nuclear Instruments & Methods in Physics Research B, 1995, 99, 50-53.	0.6	0
209	Simulation of fast electron emission from surfaces. Nuclear Instruments & Methods in Physics Research B, 1995, 100, 378-382.	0.6	0
210	Solid-state effects in electron emission from atomic collisions near surfaces. Nuclear Instruments & Methods in Physics Research B, 1997, 124, 320-326.	0.6	0
211	Quantum trajectory Monte Carlo method describing the coherent dynamics of highly charged ions. Nuclear Instruments & Methods in Physics Research B, 2003, 205, 818-825.	0.6	0
212	Chaotic-to-regular crossover of shot noise in mesoscopic conductors. AIP Conference Proceedings, 2005, , .	0.3	0
213	Shot noise in transport through quantum dots: ballistic versus diffractive scattering., 2007,,.		0
214	Shot noise in transport through quantum dots: Clean versus disordered samples. Journal of Computational Electronics, 2007, 6, 109-111.	1.3	0
215	Wavelength dependent channel-closing enhancements in multi-photon ionization. Journal of Physics: Conference Series, 2009, 194, 022037.	0.3	0
216	Time-dependent electronic dynamics in atoms, molecules, and solids probed by ultrashort pulses. , 2011, , .		0

#	Article	IF	Citations
217	Measuring the influence of the Coulomb binding potential on the trajectories of strong-field driven electronic wave packets. , $2011, , .$		O
218	Controlling and reading interference structures created by strong field ionizing attosecond electron wave packets. , $2011, \dots$		0
219	Doubly-differential intracycle interference in above threshold photoionization. Journal of Physics: Conference Series, 2012, 388, 032024.	0.3	O
220	Nanomelting and track formation in insulators by swift heavy ions. Journal of Physics: Conference Series, 2012, 388, 132012.	0.3	0
221	Quantum Control of Electron Wavepacket Dynamics in Molecules by Trains of Half-Cycle Pulses. Journal of Physics: Conference Series, 2012, 388, 012033.	0.3	0
222	Electron emission in laser-nanotip interaction. Journal of Physics: Conference Series, 2012, 388, 132018.	0.3	0
223	Attosecond physics at a nanoscale metal tip. EPJ Web of Conferences, 2013, 41, 01005.	0.1	0
224	Interaction of ultrashort laser pulses with condensed matter: Dielectrics and nanotips., 2014,,.		0
225	Observation of High-Lying Rydberg States Survived from Strong Field Interaction. , 2015, , .		0
226	High-Lying Rydberg States from Strong Field Interaction. Journal of Physics: Conference Series, 2015, 635, 092084.	0.3	0
227	Time-Dependent Two-Particle Reduced Density Matrix Theory: Application to High-Harmonic Generation. Journal of Physics: Conference Series, 2017, 875, 022032.	0.3	0
228	Localizing high-lying Rydberg wave packets by orthogonally-polarized two-color laser pulses. , 2017, , .		0
229	Localizing High-Lying Rydberg Wave Packets with Orthogonally-Polarized Two-Color Laser Fields. Journal of Physics: Conference Series, 2017, 875, 022016.	0.3	0
230	Time-Dependent Two-Particle Reduced Density Matrix Theory: Application to High-Harmonic Generation. Journal of Physics: Conference Series, 2017, 875, 012011.	0.3	0
231	Frustrated Double Ionization of Argon Atoms. , 2018, , .		0
232	Two-color phase-controlled photoemission from a zero-dimensional nanostructure. EPJ Web of Conferences, 2019, 205, 05004.	0.1	0
233	Intracycle Interference in Above-Threshold Ionization. , 2010, , .		0
234	Attosecond wavefunction retrieval by electron wavepacket interferometry. , 2012, , .		0

#	Article	IF	CITATIONS
235	Attosecond Strong-field Electron Wavepacket Interferometry. , 2012, , .		O
236	Coherence and Correlations in Fast Ion-Atom Collisions. NATO ASI Series Series B: Physics, 1988, , 159-176.	0.2	O
237	Coincidence Spectroscopy of High-Lying Rydberg States with a Reaction Microscope. , 2016, , .		О
238	Laser-sub-cycle Fragmentation Dynamics of Argon Dimers. , 2016, , .		0
239	High-order phase measurements of attosecond wave packets. , 2020, , .		O
240	Time delays from one-photon transitions in the continuum. , 2020, , .		0
241	Time delays from one-photon transitions in the continuum. , 2020, , .		O
242	Theory of Subcycle Linear Momentum Transfer in Strong-Field Tunneling Ionization. , 2020, , .		0
243	Electronic excitations in fast ion-solid collisions. , 1991, , 197-220.		О