
Evelien Am Vanderlinden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3103584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and structure–activity relationship of <i>L</i> â€methionineâ€coupled 1,3,4â€thiadiazole derivatives withÂactivity against influenza virus. Chemical Biology and Drug Design, 2022, 99, 398-415.	1.5	3
2	<i>In Vitro</i> Characterization of the Carbohydrate-Binding Agents HHA, GNA, and UDA as Inhibitors of Influenza A and B Virus Replication. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	8
3	Favipiravir Does Not Inhibit Chikungunya Virus Replication in Mosquito Cells and Aedes aegypti Mosquitoes. Microorganisms, 2021, 9, 944.	1.6	4
4	Broad spectrum anti-coronavirus activity of a series of anti-malaria quinoline analogues. Antiviral Research, 2021, 193, 105127.	1.9	27
5	A broad influenza virus inhibitor acting via IMP dehydrogenase and in synergism with ribavirin. Antiviral Research, 2021, 196, 105208.	1.9	4
6	Superior inhibition of influenza virus hemagglutinin-mediated fusion by indole-substituted spirothiazolidinones. Bioorganic and Medicinal Chemistry, 2020, 28, 115130.	1.4	20
7	N-benzyl 4,4-disubstituted piperidines as a potent class of influenza H1N1 virus inhibitors showing a novel mechanism of hemagglutinin fusion peptide interaction. European Journal of Medicinal Chemistry, 2020, 194, 112223.	2.6	11
8	Novel <i>N</i> â€(1â€thiaâ€4â€azaspiro[4.5]decanâ€4â€yl)carboxamide derivatives as potent and selective influv virus fusion inhibitors. Archiv Der Pharmazie, 2019, 352, e1900028.	enza 2.1	5
9	Cell line-dependent activation and antiviral activity of T-1105, the non-fluorinated analogue of T-705 (favipiravir). Antiviral Research, 2019, 167, 1-5.	1.9	25
10	4,4-Disubstituted N-benzylpiperidines: A Novel Class of Fusion Inhibitors of Influenza Virus H1N1 Targeting a New Binding Site in Hemagglutinin. Proceedings (mdpi), 2019, 22, .	0.2	0
11	Influenza virus entry via the GM3 ganglioside-mediated platelet-derived growth factor receptor β signalling pathway. Journal of General Virology, 2019, 100, 583-601.	1.3	34
12	Aniline-Based Inhibitors of Influenza H1N1 Virus Acting on Hemagglutinin-Mediated Fusion. Journal of Medicinal Chemistry, 2018, 61, 98-118.	2.9	31
13	Structure-activity relationship studies of lipophilic teicoplanin pseudoaglycon derivatives as new anti-influenza virus agents. European Journal of Medicinal Chemistry, 2018, 157, 1017-1030.	2.6	17
14	Prodrugs of the Phosphoribosylated Forms of Hydroxypyrazinecarboxamide Pseudobase T-705 and Its De-Fluoro Analogue T-1105 as Potent Influenza Virus Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 6193-6210.	2.9	32
15	Synthesis and biological evaluation of lipophilic teicoplanin pseudoaglycon derivatives containing a substituted triazole function. Journal of Antibiotics, 2017, 70, 152-157.	1.0	21
16	Antiviral therapies on the horizon for influenza. Current Opinion in Pharmacology, 2016, 30, 106-115.	1.7	67
17	Distinct Effects of T-705 (Favipiravir) and Ribavirin on Influenza Virus Replication and Viral RNA Synthesis. Antimicrobial Agents and Chemotherapy, 2016, 60, 6679-6691.	1.4	86
18	Synthesis and Structure-Activity Relationship of N-(3-Oxo-1-Thia-4-Azaspiro[4.5]Decan-4-Yl)Carboxamide Inhibitors of Influenza Virus Hemagglutinin Mediated Fusion. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1075-1087.	0.8	10

#	Article	IF	CITATIONS
19	A few atoms make the difference: Synthetic, CD, NMR and computational studies on antiviral and antibacterial activities of glycopeptide antibiotic aglycon derivatives. European Journal of Medicinal Chemistry, 2015, 94, 73-86.	2.6	11
20	Synthesis of a cluster-forming sialylthio-d-galactose fullerene conjugate and evaluation of its interaction with influenza virus hemagglutinin and neuraminidase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2420-2423.	1.0	28
21	Emerging Antiviral Strategies to Interfere with Influenza Virus Entry. Medicinal Research Reviews, 2014, 34, 301-339.	5.0	91
22	Semisynthetic teicoplanin derivatives as new influenza virus binding inhibitors: Synthesis and antiviral studies. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3251-3254.	1.0	23
23	Role of the viral hemagglutinin in the anti-influenza virus activity of newly synthesized polycyclic amine compounds. Antiviral Research, 2013, 99, 281-291.	1.9	26
24	Synthesis and Biological Evaluation of Purine 2′â€Fluoroâ€2â€2â€deoxyriboside ProTides as Antiâ€influenza Vi Agents. ChemMedChem, 2013, 8, 415-425.	rus 1.6	12
25	Intracytoplasmic Trapping of Influenza Virus by a Lipophilic Derivative of Aglycoristocetin. Journal of Virology, 2012, 86, 9416-9431.	1.5	31
26	Microwave assisted synthesis and anti-influenza virus activity of 1-adamantyl substituted N-(1-thia-4-azaspiro[4.5]decan-4-yl)carboxamide derivatives. Bioorganic and Medicinal Chemistry, 2012, 20, 7155-7159.	1.4	34
27	Synthesis of fluorescent ristocetin aglycon derivatives with remarkable antibacterial and antiviral activities. European Journal of Medicinal Chemistry, 2012, 58, 361-367.	2.6	11
28	Synthesis and Anti-influenza A Virus Activity of 2,2-Dialkylamantadines and Related Compounds. ACS Medicinal Chemistry Letters, 2012, 3, 1065-1069.	1.3	33
29	Synthesis and biological evaluation of pyrimidine nucleoside monophosphate prodrugs targeted against influenza virus. Antiviral Research, 2012, 94, 35-43.	1.9	49
30	Synthesis and Preliminary Biologic Evaluation of 5â€Substitutedâ€2â€(4â€substituted phenyl)â€1,3â€Benzoxazo as A Novel Class of Influenza Virus A Inhibitors. Chemical Biology and Drug Design, 2012, 79, 1018-1024.	les 1.5	7
31	Discovery of Dihydroâ€Alkyloxyâ€Benzylâ€Oxopyrimidines as Promising Antiâ€Influenza Virus Agents. Chemical Biology and Drug Design, 2011, 78, 596-602.	1.5	6
32	Novel Inhibitors of Influenza Virus Fusion: Structure-Activity Relationship and Interaction with the Viral Hemagglutinin. Journal of Virology, 2010, 84, 4277-4288.	1.5	137
33	Anti-influenza virus activity and structure–activity relationship of aglycoristocetin derivatives with cyclobutenedione carrying hydrophobic chains. Antiviral Research, 2009, 82, 89-94.	1.9	49