
Shota Sasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3103423/publications.pdf Version: 2024-02-01

SHOTA SASAKI

#	Article	IF	CITATIONS
1	Human coronavirus inactivation by atmospheric pressure helium plasma. Journal Physics D: Applied Physics, 2022, 55, 295203.	2.8	1
2	Activation of plant immunity by exposure to dinitrogen pentoxide gas generated from air using plasma technology. PLoS ONE, 2022, 17, e0269863.	2.5	4
3	Experimental detection of liquid-phase OH radical decay originating from atmospheric-pressure plasma exposure. Applied Physics Express, 2021, 14, 056001.	2.4	4
4	Portable Plasma Device for Electric N ₂ O ₅ Production from Air. Industrial & Engineering Chemistry Research, 2021, 60, 798-801.	3.7	7
5	Characterization of middle-molecule introduction into cells using mm-scale discharge in saline. Japanese Journal of Applied Physics, 2020, 59, 040904.	1.5	2
6	TRPA1 and TRPV1 channels participate in atmospheric-pressure plasma-induced [Ca2+]i response. Scientific Reports, 2020, 10, 9687.	3.3	5
7	Continuous release of O2â^'/ONOOâ^'in plasmaâ€exposed HEPESâ€buffered saline promotes TRP channelâ€mediated uptake of a large cation. Plasma Processes and Polymers, 2020, 17, 1900257.	3.0	6
8	Liquid spray transport of air–plasma-generated reactive species toward plant disease management. Journal Physics D: Applied Physics, 2020, 53, 354004.	2.8	13
9	Quantitative evaluation of reactive oxygen and chlorine species generated by discharge in PBS. Japanese Journal of Applied Physics, 2019, 58, 106002.	1.5	2
10	Investigation on dinitrogen pentoxide roles on air plasma effluent exposure to liquid water solution. Journal Physics D: Applied Physics, 2019, 52, 064003.	2.8	12
11	Direct plasma stimuli including electrostimulation and OH radical induce transient increase in intracellular Ca ²⁺ and uptake of a middleâ€size membraneâ€impermeable molecule. Plasma Processes and Polymers, 2018, 15, 1700077.	3.0	20
12	Control of Cell Function Using Gas-Liquid Interfacial Plasmas. Vacuum and Surface Science, 2018, 61, 143-149.	0.1	0
13	Gas-liquid interfacial plasmas producing reactive species for cell membrane permeabilization. Journal of Clinical Biochemistry and Nutrition, 2017, 60, 3-11.	1.4	40
14	Cold atmospheric plasma enhances osteoblast differentiation. PLoS ONE, 2017, 12, e0180507.	2.5	34
15	Apoptotic effects on cultured cells of atmospheric-pressure plasma produced using various gases. Japanese Journal of Applied Physics, 2016, 55, 01AF03.	1.5	1
16	Characterization of plasma-induced cell membrane permeabilization: focus on OH radical distribution. Journal Physics D: Applied Physics, 2016, 49, 334002.	2.8	45
17	Roles of charged particles and reactive species on cell membrane permeabilization induced by atmospheric-pressure plasma irradiation. Japanese Journal of Applied Physics, 2016, 55, 07LG04.	1.5	11
18	Calcium influx through TRP channels induced by short-lived reactive species in plasma-irradiated solution. Scientific Reports, 2016, 6, 25728.	3.3	38

#	Article	IF	CITATIONS
19	Improvement of cell membrane permeability using a cell-solution electrode for generating atmospheric-pressure plasma. Biointerphases, 2015, 10, 029521.	1.6	50
20	Highly efficient and minimally invasive transfection using time-controlled irradiation of atmospheric-pressure plasma. Applied Physics Express, 2014, 7, 026202.	2.4	50