Dhiraj D Bhatia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3103380/publications.pdf Version: 2024-02-01

<u> Πηιδαι Ν Βηατια</u>

#	Article	IF	CITATIONS
1	A synthetic icosahedral DNA-based host–cargo complex for functional in vivo imaging. Nature Communications, 2011, 2, 339.	12.8	215
2	lcosahedral DNA Nanocapsules by Modular Assembly. Angewandte Chemie - International Edition, 2009, 48, 4134-4137.	13.8	196
3	Friction Mediates Scission of Tubular Membranes Scaffolded by BAR Proteins. Cell, 2017, 170, 172-184.e11.	28.9	171
4	Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. Nature Nanotechnology, 2016, 11, 1112-1119.	31.5	142
5	Controlled Release of Encapsulated Cargo from a DNA Icosahedron using a Chemical Trigger. Angewandte Chemie - International Edition, 2013, 52, 6854-6857.	13.8	109
6	Structural DNA Nanotechnology: From Bases to Bricks, From Structure to Function. Journal of Physical Chemistry Letters, 2010, 1, 1994-2005.	4.6	63
7	Functional DNA Based Hydrogels: Development, Properties and Biological Applications. ACS Biomaterials Science and Engineering, 2020, 6, 6021-6035.	5.2	61
8	A method to study in vivo stability of DNA nanostructures. Methods, 2013, 64, 94-100.	3.8	57
9	Geometry of a DNA Nanostructure Influences Its Endocytosis: Cellular Study on 2D, 3D, and <i>in Vivo</i> Systems. ACS Nano, 2022, 16, 10496-10508.	14.6	42
10	Synthetic, biofunctional nucleic acid-based molecular devices. Current Opinion in Biotechnology, 2011, 22, 475-484.	6.6	30
11	Designer, Programmable 3D DNA Nanodevices to Probe Biological Systems. ACS Applied Bio Materials, 2020, 3, 7265-7277.	4.6	25
12	pHâ€Toggled DNA Architectures: Reversible Assembly of Threeâ€Way Junctions into Extended 1D Architectures Through Aâ€Motif Formation. Small, 2010, 6, 1288-1292.	10.0	22
13	Unusual Aggregates Formed by the Self-Assembly of Proline, Hydroxyproline, and Lysine. ACS Chemical Neuroscience, 2021, 12, 3237-3249.	3.5	22
14	Sequential and cellular detection of copper and lactic acid by disaggregation and reaggregation of the fluorescent panchromatic fibres of an acylthiourea based sensor. Soft Matter, 2021, 17, 4304-4316.	2.7	20
15	Aptamer-Programmed DNA Nanodevices for Advanced, Targeted Cancer Theranostics. ACS Applied Bio Materials, 2021, 4, 5392-5404.	4.6	17
16	Spatiotemporal Dynamics of Endocytic Pathways Adapted by Small DNA Nanocages in Model Neuroblastoma Cell-Derived Differentiated Neurons. ACS Applied Bio Materials, 2021, 4, 3350-3359.	4.6	16
17	Peptide functionalized DNA hydrogel enhances neuroblastoma cell growth and differentiation. Nanoscale, 2022, 14, 8611-8620.	5.6	16
18	Effectiveness of Oil-Layered Albumin Microbubbles Produced Using Microfluidic T-Junctions in Series for In Vitro Inhibition of Tumor Cells. Langmuir, 2020, 36, 11429-11441.	3.5	15

Dhiraj D Bhatia

#	Article	IF	CITATIONS
19	Probing the structure and in silico stability of cargo loaded DNA icosahedra using MD simulations. Nanoscale, 2017, 9, 4467-4477.	5.6	14
20	Programmable DNA Nanodevices for Applications in Neuroscience. ACS Chemical Neuroscience, 2021, 12, 363-377.	3.5	14
21	Programmable, self-assembled DNA nanodevices for cellular programming and tissue engineering. Nanoscale, 2021, 13, 16834-16846.	5.6	14
22	Selfâ€assembled, Programmable DNA Nanodevices for Biological and Biomedical Applications. ChemBioChem, 2021, 22, 763-778.	2.6	13
23	Biofunctionalized metal–organic frameworks and host–guest interactions for advanced biomedical applications. Journal of Materials Chemistry B, 2022, 10, 7194-7205.	5.8	11
24	Designer DNA give RNAi more spine. Nature Nanotechnology, 2012, 7, 344-346.	31.5	10
25	Stimuli Responsive, Programmable DNA Nanodevices for Biomedical Applications. Frontiers in Chemistry, 2021, 9, 704234.	3.6	10
26	DNA-Functionalized Nanoparticles for Targeted Biosensing and Biological Applications. ACS Omega, 2020, 5, 30767-30774.	3.5	8
27	Designer DNA Hydrogels Stimulate 3D Cell Invasion by Enhanced Receptor Expression and Membrane Endocytosis. ACS Biomaterials Science and Engineering, 2021, 7, 5933-5942.	5.2	8
28	A novel type of quantum dot–transferrin conjugate using DNA hybridization mimics intracellular recycling of endogenous transferrin. Nanoscale, 2017, 9, 15453-15460.	5.6	7
29	Water stable, red emitting, carbon nanoparticles stimulate 3D cell invasion <i>via</i> clathrin-mediated endocytic uptake. Nanoscale Advances, 2022, 4, 1375-1386.	4.6	7
30	Discovery of novel tetrahydrobenzo[b]thiophene-3-carbonitriles as histone deacetylase inhibitors. Bioorganic Chemistry, 2021, 110, 104801.	4.1	6
31	Ultrasound-Enabled Therapeutic Delivery and Regenerative Medicine: Physical and Biological Perspectives. ACS Biomaterials Science and Engineering, 2021, 7, 4371-4387.	5.2	6
32	Self-assembly of a benzothiazolone conjugate into panchromatic fluorescent fibres and their application in cellular imaging. New Journal of Chemistry, 2021, 45, 17211-17221.	2.8	6
33	Neurotoxic or neuroprotective: Post-translational modifications of α-synuclein at the cross-roads of functions. Biochimie, 2022, 192, 38-50.	2.6	5
34	The roles of dynein and myosin VI motor proteins in endocytosis. Journal of Cell Science, 2022, 135, .	2.0	5
35	A Method to Encapsulate Molecular Cargo Within DNA Icosahedra. Methods in Molecular Biology, 2013, 991, 65-80.	0.9	4
36	DNA Nanodevices to Probe and Program Membrane Organization, Dynamics, and Applications. Journal of Membrane Biology, 2020, 253, 577-587.	2.1	4

DHIRAJ D BHATIA

#	Article	IF	CITATIONS
37	<scp>α‧ynuclein</scp> fibrils explore actinâ€mediated macropinocytosis for cellular entry into model neuroblastoma neurons. Traffic, 2022, 23, 391-410.	2.7	4
38	γâ€Resorcyclic Acidâ€Based AIEgens for Illuminating Endoplasmic Reticulum**. Chemistry - A European Journal, 2022, 28, .	3.3	2
39	DNA Nanotechnologyâ€Based Supramolecular Assemblies for Targeted Biomedical Applications. Chemical Record, 2022, , e202200048.	5.8	2
40	Designer Nucleic Acid-Based Devices in Nanomedicine. , 2013, , 1-10.		0
41	Designer 3D-DNA nanodevices: Structures, functions, and cellular applications. , 2022, , 669-676.		0
42	DNA nanotechnology based point-of-care theranostics devices. , 2022, , 399-414.		0