
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3103362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transforming Surface Coordination Polymers into Covalent Surface Polymers: Linked Polycondensed Aromatics through Oligomerization of Nâ€Heterocyclic Carbene Intermediates. Angewandte Chemie - International Edition, 2008, 47, 2414-2417.	13.8	191
2	A Two-Dimensional Porphyrin-Based Porous Network Featuring Communicating Cavities for the Templated Complexation of Fullerenes. Advanced Materials, 2006, 18, 275-279.	21.0	186
3	Controlling Molecular Assembly in Two Dimensions: The Concentration Dependence of Thermally Induced 2D Aggregation of Molecules on a Metal Surface. Angewandte Chemie - International Edition, 2005, 44, 7394-7398.	13.8	154
4	A Supramolecular Multiposition Rotary Device. Angewandte Chemie - International Edition, 2007, 46, 4089-4092.	13.8	131
5	Band Formation from Coupled Quantum Dots Formed by a Nanoporous Network on a Copper Surface. Science, 2009, 325, 300-303.	12.6	126
6	Supramolecular Nanostructuring of Silver Surfaces via Self-Assembly of [60]Fullerene and Porphyrin Modules. Advanced Functional Materials, 2007, 17, 1051-1062.	14.9	111
7	Comparing Graphene Growth on Cu(111) versus Oxidized Cu(111). Nano Letters, 2015, 15, 917-922.	9.1	107
8	Atomically precise graphene nanoribbons: interplay of structural and electronic properties. Chemical Society Reviews, 2021, 50, 6541-6568.	38.1	105
9	Immobilization of Rhodium Complexes at Thiolate Monolayers on Gold Surfaces:Â Catalytic and Structural Studies. Journal of the American Chemical Society, 2005, 127, 8720-8731.	13.7	95
10	Selfâ€Assembly and Twoâ€Dimensional Spontaneous Resolution of Cyanoâ€Functionalized [7]Helicenes on Cu(111). Angewandte Chemie - International Edition, 2011, 50, 9982-9986.	13.8	94
11	Modification of Supramolecular Binding Motifs Induced By Substrate Registry: Formation of Selfâ€Assembled Macrocycles and Chainâ€Like Patterns. Chemistry - A European Journal, 2009, 15, 11139-11150.	3.3	89
12	Aggregation and Contingent Metal/Surface Reactivity of 1,3,8,10â€Tetraazaperopyrene (TAPP) on Cu(111). Chemistry - A European Journal, 2010, 16, 2079-2091.	3.3	89
13	Lateral Manipulation for the Positioning of Molecular Guests within the Confinements of a Highly Stable Self-Assembled Organic Surface Network. Small, 2007, 3, 1336-1340.	10.0	85
14	Comparing Ullmann Coupling on Noble Metal Surfaces: Onâ€Surface Polymerization of 1,3,6,8â€Tetrabromopyrene on Cu(111) and Au(111). Chemistry - A European Journal, 2016, 22, 5937-5944.	3.3	84
15	Transfer of large-scale two-dimensional semiconductors: challenges and developments. 2D Materials, 2021, 8, 032001.	4.4	81
16	Trimodular Engineering of Linear Supramolecular Miniatures on Ag(111) Surfaces Controlled by Complementary Triple Hydrogen Bonds. Angewandte Chemie - International Edition, 2008, 47, 7726-7730.	13.8	76
17	Supramolecular Synthons on Surfaces: Controlling Dimensionality and Periodicity of Tetraarylporphyrin Assemblies by the Interplay of Cyano and Alkoxy Substituents. Chemistry - A European Journal, 2008, 14, 5794-5802.	3.3	75
18	Rotation–libration in a hierarchic supramolecular rotor–stator system: Arrhenius activation and retardation by local interaction. Chemical Communications, 2007, , 1349-1351.	4.1	68

#	Article	IF	CITATIONS
19	Self-assembly, DNA Complexation, and pH Response of Amphiphilic Dendrimers for Gene Transfection. Langmuir, 2007, 23, 737-746.	3.5	68
20	Controlling the Dimensionality of On-Surface Coordination Polymers via Endo- or Exoligation. Journal of the American Chemical Society, 2014, 136, 9355-9363.	13.7	65
21	STM fingerprint of molecule–adatom interactions in a self-assembled metal–organic surface coordination network on Cu(111). Physical Chemistry Chemical Physics, 2010, 12, 8815.	2.8	62
22	On-surface synthesis of a two-dimensional porous coordination network: Unraveling adsorbate interactions. Physical Review B, 2014, 90, .	3.2	61
23	Self-assembly of pyrene derivatives on Au(111): substituent effects on intermolecular interactions. Chemical Communications, 2014, 50, 14089-14092.	4.1	61
24	Thiol-free self-assembled oligoethylene glycols enable robust air-stable molecular electronics. Nature Materials, 2020, 19, 330-337.	27.5	60
25	Adsorption and Dynamics of Long-Range Interacting Fullerenes in a Flexible, Two-Dimensional, Nanoporous Porphyrin Network. ChemPhysChem, 2006, 7, 1462-1470.	2.1	58
26	Chirality Transfer in 1D Self-Assemblies: Influence of H-Bonding vs Metal Coordination between Dicyano[7]helicene Enantiomers. Journal of the American Chemical Society, 2013, 135, 15270-15273.	13.7	57
27	Binary Molecular Layers of C60 and Copper Phthalocyanine on Au(111): Self-Organized Nanostructuring. Advanced Functional Materials, 2001, 11, 175-178.	14.9	52
28	Cyanoâ€Functionalized Triarylamines on Au(111): Competing Intermolecular versus Molecule/Substrate Interactions. Advanced Materials Interfaces, 2014, 1, 1300025.	3.7	52
29	On‣urface Formation of Cumulene by Dehalogenative Homocoupling of Alkenyl <i>gem</i> â€Dibromides. Angewandte Chemie - International Edition, 2017, 56, 12165-12169.	13.8	52
30	Investigation of the growth of PTCDA on Cu(): an STM study. Surface Science, 2002, 507-510, 330-334.	1.9	45
31	Growth of 3,4,9,10-perylenetetracarboxylic-dianhydride crystallites on noble metal surfaces. Organic Electronics, 2004, 5, 35-43.	2.6	40
32	Hindered rotation of a copper phthalocyanine molecule onC60: Experiments and molecular mechanics calculations. Physical Review B, 2006, 73, .	3.2	40
33	Direct observation of hindered eccentric rotation of an individual molecule: Cu-phthalocyanine onC60. Physical Review B, 2001, 65, .	3.2	38
34	1,3,5-Benzenetribenzoic Acid on Cu(111) and Graphene/Cu(111): A Comparative STM Study. Journal of Physical Chemistry C, 2016, 120, 18093-18098.	3.1	35
35	Chiral‣elective Formation of 1D Polymers Based on Ullmannâ€Type Coupling: The Role of the Metallic Substrate. Small, 2017, 13, 1603675.	10.0	35
36	Visualizing the Product of a Formal Cycloaddition of 7,7,8,8â€Tetracyanoâ€ <i>p</i> â€quinodimethane (TCNQ) to an Acetyleneâ€Appended Porphyrin by Scanning Tunneling Microscopy on Au(111). Chemistry - A European Journal, 2011, 17, 5246-5250.	3.3	33

#	Article	IF	CITATIONS
37	Analysis of the three-dimensional structure of a small crystallite by scanning tunneling microscopy: Multilayer films of 3,4,9,10-perylenetetracarboxylic-dianhydride (PTCDA) on Cu(110). Europhysics Letters, 2002, 59, 423-429.	2.0	32
38	Surface-confined [2 + 2] cycloaddition towards one-dimensional polymers featuring cyclobutadiene units. Nanoscale, 2017, 9, 18305-18310.	5.6	32
39	Protectingâ€Groupâ€Controlled Surface Chemistry—Organization and Heatâ€Induced Coupling of 4,4′â€Di(<i>tert</i> â€butoxycarbonylamino)biphenyl on Metal Surfaces. Angewandte Chemie - International Edition, 2009, 48, 3179-3183.	13.8	30
40	Interplay of weak interactions in the atom-by-atom condensation of xenon within quantum boxes. Nature Communications, 2015, 6, 6071.	12.8	30
41	Cyanoâ€Functionalized Triarylamines on Coinage Metal Surfaces: Interplay of Intermolecular and Molecule–Substrate Interactions. Chemistry - A European Journal, 2016, 22, 581-589.	3.3	30
42	Heat-induced formation of one-dimensional coordination polymers on Au(111): an STM study. Chemical Communications, 2015, 51, 14473-14476.	4.1	29
43	Confinement properties of 2D porous molecular networks on metal surfaces. Journal of Physics Condensed Matter, 2016, 28, 153003.	1.8	29
44	Bias-induced conformational switching of supramolecular networks of trimesic acid at the solid-liquid interface. Journal of Chemical Physics, 2018, 148, 174703.	3.0	27
45	Low-Dimensional Metal–Organic Coordination Structures on Graphene. Journal of Physical Chemistry C, 2019, 123, 12730-12735.	3.1	22
46	Covalent assembly of a two-dimensional molecular "sponge―on a Cu(111) surface: confined electronic surface states in open and closed pores. Chemical Communications, 2014, 50, 7628-7631.	4.1	20
47	Controlling the Dimensionality and Structure of Supramolecular Porphyrin Assemblies by their Functional Substituents: Dimers, Chains, and Closeâ€Packed 2D Assemblies. Chemistry - A European Journal, 2012, 18, 14610-14613.	3.3	19
48	From hydrogen bonding to metal coordination and back: Porphyrin-based networks on Ag(111). Journal of Chemical Physics, 2015, 142, 101926.	3.0	19
49	Engineering Long-Range Order in Supramolecular Assemblies on Surfaces: The Paramount Role of Internal Double Bonds in Discrete Long-Chain Naphthalenediimides. Journal of the American Chemical Society, 2020, 142, 4070-4078.	13.7	19
50	Two-Dimensional Multiphase Behavior Induced by Sterically Hindered Conformational Optimization of Phenoxy-Substituted Phthalocyanines. Journal of Physical Chemistry C, 2008, 112, 6139-6144.	3.1	18
51	Conformation-controlled networking of H-bonded assemblies on surfaces. Chemical Communications, 2009, , 3525.	4.1	18
52	On‣urface Formation of Cumulene by Dehalogenative Homocoupling of Alkenyl <i>gem</i> â€Dibromides. Angewandte Chemie, 2017, 129, 12333-12337.	2.0	18
53	Supramolecular self-assembly of metal-free naphthalocyanine on Au(111). Physical Chemistry Chemical Physics, 2014, 16, 8881.	2.8	17
54	Growth of 3,4,9,10-perylenetetracarboxylic-dianhydride (PTCDA) on Cu(110) studied by STM. Applied Physics A: Materials Science and Processing, 2002, 74, 303-305.	2.3	16

#	Article	IF	CITATIONS
55	Configuring Electronic States in an Atomically Precise Array of Quantum Boxes. Small, 2016, 12, 3757-3763.	10.0	16
56	Hourglass-Shaped Dendrimers on Surfaces: A Comparison of Different Scanning-Tunneling-Microscopy Approaches. Helvetica Chimica Acta, 2002, 85, 4255-4263.	1.6	14
57	Coverage-Dependent Disorder-to-Order Phase Transformation of a Uracil Derivative on Ag(111). Journal of Physical Chemistry C, 2014, 118, 15286-15291.	3.1	14
58	Coverage-Dependent Structural Transformation of Cyano-Functionalized Porphyrin Networks on Au(111) via Addition of Cobalt Atoms. Journal of Physical Chemistry C, 2019, 123, 19681-19687.	3.1	14
59	Surface state tunable energy and mass renormalization from homothetic quantum dot arrays. Nanoscale, 2019, 11, 23132-23138.	5.6	14
60	Thermolubricity of gas monolayers on graphene. Nanoscale, 2014, 6, 8062.	5.6	13
61	Self-Assembly of Individually Addressable Complexes of C60 and Phthalocyanines on a Metal Surface: Structural and Electronic Investigations. Journal of Physical Chemistry C, 2009, 113, 19373-19375.	3.1	10
62	Microscopic characterisation of suspended graphene grown by chemical vapour deposition. Nanoscale, 2013, 5, 9057.	5.6	10
63	Triphenyleneâ€Derived Electron Acceptors and Donors on Ag(111): Formation of Intermolecular Chargeâ€Transfer Complexes with Common Unoccupied Molecular States. Small, 2019, 15, e1901741.	10.0	10
64	STM Investigation on Single, Physisorbed Dendrimers. Single Molecules, 2002, 3, 295-299.	0.9	8
65	Temperature dependence of the partially localized state in a 2D molecular nanoporous network. Applied Surface Science, 2017, 391, 39-43.	6.1	8
66	Unveiling Adatoms in On-Surface Reactions: Combining Scanning Probe Microscopy with van't Hoff Plots. Journal of Physical Chemistry C, 2021, 125, 9847-9854.	3.1	8
67	Casimir and electrostatic forces from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Bi</mml:mi> <mml: thin films of varying thickness. Physical Review B, 2021, 103, .</mml: </mml:msub></mml:mrow></mml:math 	nn>222/mm	ו :m a>
68	Effective determination of surface potential landscapes from metal-organic nanoporous network overlayers. New Journal of Physics, 2019, 21, 053004.	2.9	7
69	Adsorbate-Induced Modification of the Confining Barriers in a Quantum Box Array. ACS Nano, 2018, 12, 768-778.	14.6	6
70	Comparison of Casimir forces and electrostatics from conductive SiC-Si/C and Ru surfaces. Physical Review B, 2019, 100, .	3.2	6
71	Structural Transformation of Surfaceâ€Confined Porphyrin Networks by Addition of Co Atoms. Chemistry - A European Journal, 2021, 27, 12430-12436.	3.3	6
72	Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules. Beilstein Journal of Nanotechnology, 2021, 12, 950-956.	2.8	6

#	Article	IF	CITATIONS
73	Comparing Cyanophenyl and Pyridyl Ligands in the Formation of Porphyrin-Based Metal–Organic Coordination Networks. Journal of Physical Chemistry C, 2021, 125, 24557-24567.	3.1	5
74	Coverage-Controlled Polymorphism of H-Bonded Networks on Au(111). Journal of Physical Chemistry C, 2019, 123, 7151-7157.	3.1	4
75	Comparing the Selfâ€Assembly of Sexiphenylâ€Dicarbonitrile on Graphite and Graphene on Cu(111). Chemistry - A European Journal, 2019, 25, 5065-5070.	3.3	4
76	Role of Cyano Groups in the Self-Assembly of Organic Molecules on Metal Surfaces. , 2018, , 153-165.		3
77	Stepwise Adsorption of Alkoxyâ€Pyrene Derivatives onto a Lamellar, Nonâ€Porous Naphthalenediimideâ€Template on HOPG. Chemistry - A European Journal, 2021, 27, 207-211.	3.3	3
78	Edge Phonon Excitations in a Chiral Self-Assembled Supramolecular Nanoribbon. Journal of Physical Chemistry Letters, 2019, 10, 5830-5835.	4.6	2
79	Self-Assembly: Cyano-Functionalized Triarylamines on Au(111): Competing Intermolecular versus Molecule/Substrate Interactions (Adv. Mater. Interfaces 1/2014). Advanced Materials Interfaces, 2014, 1, n/a-n/a.	3.7	1
80	Molecular Self-Assembly on Graphene: The Role of the Substrate. , 2018, , 110-119.		1
81	Length-dependent symmetry in narrow chevron-like graphene nanoribbons. Nanoscale Advances, 2022, 4, 3531-3536.	4.6	1
82	Supramolecular Self-Assemblies as High-Density Data-Storage Media. Materials Research Society Symposia Proceedings, 2006, 961, 1.	0.1	0
83	Self-Assembly of a Triphenylene-Based Electron Donor Molecule on Graphene: Structural and Electronic Properties. Journal of Physical Chemistry C, 0, , .	3.1	0