Pooja Basnett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3103360/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 647007.	2.0	12
2	Preclinical study of peripheral nerve regeneration using nerve guidance conduits based on polyhydroxyalkanaotes. Bioengineering and Translational Medicine, 2021, 6, e10223.	3.9	16
3	Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering. ACS Applied Materials & Interfaces, 2021, 13, 32624-32639.	4.0	27
4	Silver Nanoparticle-Coated Polyhydroxyalkanoate Based Electrospun Fibers for Wound Dressing Applications. Materials, 2021, 14, 4907.	1.3	11
5	Bioresorbable and Mechanically Optimized Nerve Guidance Conduit Based on a Naturally Derived Medium Chain Length Polyhydroxyalkanoate and Poly(Îμ-Caprolactone) Blend. ACS Biomaterials Science and Engineering, 2021, 7, 672-689.	2.6	11
6	Controlled Delivery of Pan-PAD-Inhibitor Cl-Amidine Using Poly(3-Hydroxybutyrate) Microspheres. International Journal of Molecular Sciences, 2021, 22, 12852.	1.8	4
7	Toward a Closed Loop, Integrated Biocompatible Biopolymer Wound Dressing Patch for Detection and Prevention of Chronic Wound Infections. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1039.	2.0	9
8	Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Frontiers in Cardiovascular Medicine, 2020, 7, 554597.	1.1	74
9	Electrosprayed Chitin Nanofibril/Electrospun Polyhydroxyalkanoate Fiber Mesh as Functional Nonwoven for Skin Application. Journal of Functional Biomaterials, 2020, 11, 62.	1.8	42
10	Cytocompatibility Evaluation of a Novel Series of PEG-Functionalized Lactide-Caprolactone Copolymer Biomaterials for Cardiovascular Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 991.	2.0	7
11	Comparison of the Influence of 45S5 and Cu-Containing 45S5 Bioactive Glass (BG) on the Biological Properties of Novel Polyhydroxyalkanoate (PHA)/BG Composites. Materials, 2020, 13, 2607.	1.3	9
12	Picosecond Laser Ablation of Polyhydroxyalkanoates (PHAs): Comparative Study of Neat and Blended Material Response. Polymers, 2020, 12, 127.	2.0	6
13	Antimicrobial Materials with Lime Oil and a Poly(3-hydroxyalkanoate) Produced via Valorisation of Sugar Cane Molasses. Journal of Functional Biomaterials, 2020, 11, 24.	1.8	20
14	Esterase-Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling To Improve Magnetic Hyperthermia Heat Losses. Chemistry of Materials, 2019, 31, 5450-5463.	3.2	34
15	Green Composites of Poly(3-hydroxybutyrate) Containing Graphene Nanoplatelets with Desirable Electrical Conductivity and Oxygen Barrier Properties. ACS Omega, 2019, 4, 19746-19755.	1.6	22
16	Binary polyhydroxyalkanoate systems for soft tissue engineering. Acta Biomaterialia, 2018, 71, 225-234.	4.1	47
17	Poly(3-hydroxyoctanoate), a promising new material for cardiac tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e495-e512.	1.3	50
18	Biosynthesis and characterization of a novel, biocompatible medium chain length polyhydroxyalkanoate by Pseudomonas mendocina CH50 using coconut oil as the carbon source. Journal of Materials Science: Materials in Medicine, 2018, 29, 179.	1.7	43

Pooja Basnett

#	Article	IF	CITATIONS
19	In Vivo Tracking and ¹ H/ ¹⁹ F Magnetic Resonance Imaging of Biodegradable Polyhydroxyalkanoate/Polycaprolactone Blend Scaffolds Seeded with Labeled Cardiac Stem Cells. ACS Applied Materials & Interfaces, 2018, 10, 25056-25068.	4.0	44
20	Production of a novel medium chain length poly(3â€hydroxyalkanoate) using unprocessed biodiesel waste and its evaluation as a tissue engineering scaffold. Microbial Biotechnology, 2017, 10, 1384-1399.	2.0	40
21	Making Nonwoven Fibrous Poly(ε aprolactone) Constructs for Antimicrobial and Tissue Engineering Applications by Pressurized Melt Gyration. Macromolecular Materials and Engineering, 2016, 301, 922-934.	1.7	42
22	Tuning core hydrophobicity of spherical polymeric nanoconstructs for docetaxel delivery. Polymer International, 2016, 65, 741-746.	1.6	22
23	Nanofibrous poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) scaffolds provide a functional microenvironment for cartilage repair. Journal of Biomaterials Applications, 2016, 31, 77-91.	1.2	47
24	Aspirin-loaded P(3HO)/P(3HB) blend films: potential materials for biodegradable drug-eluting stents. Bioinspired, Biomimetic and Nanobiomaterials, 2013, 2, 141-153.	0.7	13
25	Novel Biodegradable and Biocompatible Poly(3â€hydroxyoctanoate)/Bacterial Cellulose Composites. Advanced Engineering Materials, 2012, 14, B330.	1.6	24