K Christian Kemp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3103245/publications.pdf

Version: 2024-02-01

304368 476904 8,631 30 22 29 citations h-index g-index papers 31 31 31 15027 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 2012, 112, 6156-6214.	23.0	3,531
2	Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chemical Reviews, 2016, 116, 5464-5519.	23.0	1,942
3	Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale, 2013, 5, 3149.	2.8	472
4	Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. ACS Nano, 2016, 10, 46-80.	7.3	433
5	Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon, 2013, 56, 173-182.	5.4	409
6	Graphene–SnO ₂ composites for highly efficient photocatalytic degradation of methylene blue under sunlight. Nanotechnology, 2012, 23, 355705.	1.3	233
7	Highly selective CO2 capture by S-doped microporous carbon materials. Carbon, 2014, 66, 320-326.	5.4	230
8	Stable platinum nanoclusters on genomic DNA–graphene oxide with a high oxygen reduction reaction activity. Nature Communications, 2013, 4, 2221.	5.8	169
9	Iron-Oxide-Supported Nanocarbon in Lithium-Ion Batteries, Medical, Catalytic, and Environmental Applications. ACS Nano, 2014, 8, 7571-7612.	7.3	157
10	Highly Stable CO ₂ /N ₂ and CO ₂ /CH ₄ Selectivity in Hyper-Cross-Linked Heterocyclic Porous Polymers. ACS Applied Materials & Samp; Interfaces, 2014, 6, 7325-7333.	4.0	151
11	Synthesis of nano zerovalent iron nanoparticles – Graphene composite for the treatment of lead contaminated water. Journal of Environmental Management, 2013, 130, 429-435.	3.8	129
12	Homogeneous anchoring of TiO2 nanoparticles on graphene sheets for waste water treatment. Materials Letters, 2012, 81, 127-130.	1.3	116
13	Highly Selective and Stable Carbon Dioxide Uptake in Polyindole-Derived Microporous Carbon Materials. Environmental Science &	4.6	80
14	Interconnected Pt-Nanodendrite/DNA/Reduced-Graphene-Oxide Hybrid Showing Remarkable Oxygen Reduction Activity and Stability. ACS Nano, 2013, 7, 9223-9231.	7.3	79
15	Reversible CO ₂ adsorption by an activated nitrogen doped graphene/polyaniline material. Nanotechnology, 2013, 24, 235703.	1.3	75
16	Antimony(III) Sulfide Thin Films as a Photoanode Material in Photocatalytic Water Splitting. ACS Applied Materials & Samp; Interfaces, 2016, 8, 8445-8451.	4.0	73
17	Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption. Nanotechnology, 2013, 24, 255702.	1.3	62
18	Ruthenocene-Containing β-Diketones: Synthesis, p <i>K</i> _a ′ Values, Keto–Enol Isomerization Kinetics, and Electrochemical Aspects. Organometallics, 2008, 27, 353-362.	1.1	59

#	Article	IF	CITATIONS
19	Activated carbon derived from waste coffee grounds for stable methane storage. Nanotechnology, 2015, 26, 385602.	1.3	49
20	Zeolites ZSM-25 and PST-20: Selective Carbon Dioxide Adsorbents at High Pressures. Journal of Physical Chemistry C, 2017, 121, 3404-3409.	1.5	46
21	CO ₂ Adsorption in the RHO Family of Embedded Isoreticular Zeolites. Journal of Physical Chemistry C, 2018, 122, 28815-28824.	1.5	37
22	Silver ZK-5 zeolites for selective ethylene/ethane separation. Separation and Purification Technology, 2020, 250, 117146.	3.9	22
23	Solution-processable conductive micro-hydrogels of nanoparticle/graphene platelets produced by reversible self-assembly and aqueous exfoliation. Journal of Materials Chemistry A, 2013, 1, 12900.	5.2	18
24	Propylene/propane separation on a ferroaluminosilicate levyne zeolite. Microporous and Mesoporous Materials, 2020, 294, 109833.	2.2	12
25	Silver-exchanged CHA zeolite as a CO2-resistant adsorbent for N2/O2 separation. Microporous and Mesoporous Materials, 2021, 323, 111239.	2.2	11
26	Small Gas Adsorption and Separation in Small-Pore Zeolites. Structure and Bonding, 2020, , 1-30.	1.0	10
27	Nanocrystalline Ag-ZK-5 zeolite for selective CH4/N2 separation. Separation and Purification Technology, 2022, 282, 120027.	3.9	10
28	Dealuminated Cs-ZK-5 zeolite for propylene/propane separation. Chemical Engineering Journal, 2021, 413, 127422.	6.6	9
29	Direct Synthesis of Ge-free IWR-type Zeolites. Chemistry Letters, 2019, 48, 1445-1447.	0.7	2
30	NextGenVOICES. Science, 2013, 340, 28-30.	6.0	1