
Paul W Hruz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3103238/publications.pdf Version: 2024-02-01

Ρλιιι \λ/ Ηριιτ

#	Article	IF	CITATIONS
1	Letter to the Editor from William J. Malone et al: "Proper Care of Transgender and Gender-diverse Persons in the Setting of Proposed Discrimination: A Policy Perspective― Journal of Clinical Endocrinology and Metabolism, 2021, 106, e3287-e3288.	3.6	4
2	Deficiencies in Scientific Evidence for Medical Management of Gender Dysphoria. Linacre quarterly, The, 2020, 87, 34-42.	0.2	14
3	Lactotrehalose, an Analog of Trehalose, Increases Energy Metabolism Without Promoting Clostridioides difficile Infection in Mice. Gastroenterology, 2020, 158, 1402-1416.e2.	1.3	23
4	Letter to the Editor: "Endocrine Treatment of Gender-Dysphoric/Gender-Incongruent Persons: An Endocrine Society Clinical Practice Guidelineâ€: Journal of Clinical Endocrinology and Metabolism, 2019, 104, 686-687.	3.6	12
5	Identification of druggable small molecule antagonists of the Plasmodium falciparum hexose transporter PfHT and assessment of ligand access to the glucose permeation pathway via FLAG-mediated protein engineering. PLoS ONE, 2019, 14, e0216457.	2.5	19
6	Experimental Approaches to Alleviating Gender Dysphoria in Children. The National Catholic Bioethics Quarterly, 2019, 19, 89-104.	0.0	1
7	Metabolic and Cardiac Adaptation to Chronic Pharmacologic Blockade of Facilitative Glucose Transport in Murine Dilated Cardiomyopathy and Myocardial Ischemia. Scientific Reports, 2018, 8, 6475.	3.3	8
8	Evaluating the Efficacy of GLUT Inhibitors Using a Seahorse Extracellular Flux Analyzer. Methods in Molecular Biology, 2018, 1713, 69-75.	0.9	6
9	Contribution of systemic inflammation to permanence of K _{ATP} -induced neonatal diabetes in mice. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E1121-E1132.	3.5	1
10	TFEB-dependent induction of thermogenesis by the hepatocyte SLC2A inhibitor trehalose. Autophagy, 2018, 14, 1959-1975.	9.1	23
11	MEPicides: potent antimalarial prodrugs targeting isoprenoid biosynthesis. Scientific Reports, 2017, 7, 8400.	3.3	26
12	Development of GLUT4-selective antagonists for multiple myeloma therapy. European Journal of Medicinal Chemistry, 2017, 139, 573-586.	5.5	31
13	The Use of Cross-Sex Steroids in the Treatment of Gender Dysphoria. The National Catholic Bioethics Quarterly, 2017, 17, 661-671.	0.0	0
14	SLC2A8 (GLUT8) is a mammalian trehalose transporter required for trehalose-induced autophagy. Scientific Reports, 2016, 6, 38586.	3.3	87
15	Mo1528 GLUT8 (SLC2A8) Is a Mammalian Trehalose Transporter Required for Trehalose-Induced Autophagy. Gastroenterology, 2016, 150, S715.	1.3	0
16	Mammalian Glucose Transporter Activity Is Dependent upon Anionic and Conical Phospholipids. Journal of Biological Chemistry, 2016, 291, 17271-17282.	3.4	53
17	A Novel Fluorescence Resonance Energy Transfer-Based Screen in High-Throughput Format To Identify Inhibitors of Malarial and Human Glucose Transporters. Antimicrobial Agents and Chemotherapy, 2016, 60, 7407-7414.	3.2	16
18	Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Science Signaling, 2016, 9, ra21.	3.6	223

Paul W Hruz

#	Article	IF	CITATIONS
19	Commentary. Clinical Chemistry, 2015, 61, 1444-1444.	3.2	0
20	Expression, purification, and functional characterization of the insulinâ€responsive facilitative glucose transporter <scp>GLUT</scp> 4. Protein Science, 2015, 24, 2008-2019.	7.6	19
21	In Silico Modeling-based Identification of Glucose Transporter 4 (GLUT4)-selective Inhibitors for Cancer Therapy. Journal of Biological Chemistry, 2015, 290, 14441-14453.	3.4	52
22	The Glucose Transporter PfHT1 Is an Antimalarial Target of the HIV Protease Inhibitor Lopinavir. Antimicrobial Agents and Chemotherapy, 2015, 59, 6203-6209.	3.2	26
23	HIV and Endocrine Disorders. Endocrinology and Metabolism Clinics of North America, 2014, 43, xvii-xviii.	3.2	3
24	Isoform-selective Inhibition of Facilitative Glucose Transporters. Journal of Biological Chemistry, 2014, 289, 16100-16113.	3.4	16
25	Saxagliptin improves glucose tolerance but not survival in a murine model of dilated cardiomyopathy. Cardiovascular Endocrinology, 2012, 1, 74-82.	0.8	11
26	GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle. Cardiovascular Diabetology, 2012, 11, 63.	6.8	64
27	Molecular mechanisms for insulin resistance in treated HIV-infection. Best Practice and Research in Clinical Endocrinology and Metabolism, 2011, 25, 459-468.	4.7	42
28	Exenatide Improves Glucose Homeostasis and Prolongs Survival in a Murine Model of Dilated Cardiomyopathy. PLoS ONE, 2011, 6, e17178.	2.5	54
29	HIV Protease Inhibitors Act as Competitive Inhibitors of the Cytoplasmic Glucose Binding Site of GLUTs with Differing Affinities for GLUT1 and GLUT4. PLoS ONE, 2011, 6, e25237.	2.5	72
30	GS-8374, a Novel HIV Protease Inhibitor, Does Not Alter Glucose Homeostasis in Cultured Adipocytes or in a Healthy-Rodent Model System. Antimicrobial Agents and Chemotherapy, 2011, 55, 1377-1382.	3.2	6
31	Acute Sulfonylurea Therapy at Disease Onset Can Cause Permanent Remission of KATP-Induced Diabetes. Diabetes, 2011, 60, 2515-2522.	0.6	33
32	Liver regeneration is impaired in lipodystrophic fatty liver dystrophy mice. Hepatology, 2010, 52, 2109-2117.	7.3	63
33	Effects of the HIV Protease Inhibitor Ritonavir on GLUT4 Knock-out Mice. Journal of Biological Chemistry, 2010, 285, 36395-36400.	3.4	53
34	Genetic Disruption of Myostatin Reduces the Development of Proatherogenic Dyslipidemia and Atherogenic Lesions In <i>Ldlr</i> Null Mice. Diabetes, 2009, 58, 1739-1748.	0.6	51
35	The Role of Protease Inhibitors in the Pathogenesis of HIV-Associated Lipodystrophy: Cellular Mechanisms and Clinical Implications. Toxicologic Pathology, 2009, 37, 65-77.	1.8	82
36	Acipimox, an Inhibitor of Lipolysis, Attenuates Atherogenesis in LDLR-Null Mice Treated With HIV Protease Inhibitor Ritonavir. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 2028-2032.	2.4	9

PAUL W HRUZ

#	Article	IF	CITATIONS
37	HIV protease inhibitors that block GLUT4 precipitate acute, decompensated heart failure in a mouse model of dilated cardiomyopathy. FASEB Journal, 2008, 22, 2161-2167.	0.5	25
38	HIV protease inhibitors and insulin resistance: lessons from in-vitro, rodent and healthy human volunteer models. Current Opinion in HIV and AIDS, 2008, 3, 660-665.	3.8	35
39	Tipranavir Without Ritonavir Does Not Acutely Induce Peripheral Insulin Resistance in a Rodent Model. Journal of Acquired Immune Deficiency Syndromes (1999), 2006, 43, 624-625.	2.1	12
40	Rosiglitazone inhibits mouse liver regeneration. FASEB Journal, 2006, 20, 2609-2611.	0.5	47
41	Molecular Mechanisms for Altered Glucose Homeostasis in HIV Infection. American Journal of Infectious Diseases, 2006, 2, 187-192.	0.2	28
42	Direct Comparison of the Acute In Vivo Effects of HIV Protease Inhibitors on Peripheral Glucose Disposal. Journal of Acquired Immune Deficiency Syndromes (1999), 2005, 40, 398-403.	2.1	56
43	Delayed Hepatocellular Mitotic Progression and Impaired Liver Regeneration in Early Growth Response-1-deficient Mice. Journal of Biological Chemistry, 2004, 279, 43107-43116.	3.4	85
44	A Structural Basis for the Acute Effects of HIV Protease Inhibitors on GLUT4 Intrinsic Activity. Journal of Biological Chemistry, 2004, 279, 55147-55152.	3.4	73
45	Disruption of hepatic adipogenesis is associated with impaired liver regeneration in mice. Hepatology, 2004, 40, 1322-1332.	7.3	200
46	HIV Protease Inhibitors Acutely Impair Glucose-Stimulated Insulin Release. Diabetes, 2003, 52, 1695-1700.	0.6	114
47	Indinavir Induces Acute and Reversible Peripheral Insulin Resistance in Rats. Diabetes, 2002, 51, 937-942.	0.6	93
48	Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations. Aids, 2002, 16, 859-863.	2.2	203
49	Adverse metabolic consequences of HIV protease inhibitor therapy: the search for a central mechanism. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E549-E553.	3.5	47
50	Structural analysis of the GLUT1 facilitative glucose transporter. Molecular Membrane Biology, 2001, 18, 183-193.	2.0	142
51	The Mechanism of Insulin Resistance Caused by HIV Protease Inhibitor Therapy. Journal of Biological Chemistry, 2000, 275, 20251-20254.	3.4	507
52	Cysteine-Scanning Mutagenesis of Transmembrane Segment 11 of the GLUT1 Facilitative Glucose Transporterâ€. Biochemistry, 2000, 39, 9367-9372.	2.5	37
53	Cysteine-scanning Mutagenesis of Transmembrane Segment 7 of the GLUT1 Glucose Transporter. Journal of Biological Chemistry, 1999, 274, 36176-36180.	3.4	48
54	3-Hydroxy-3-methylglutaryl coenzyme A lyase (HL): cloning and characterization of a mouse liver HL cDNA and subchromosomal mapping of the human and mouse HL genes. Mammalian Genome, 1993, 4, 382-387.	2.2	30

Paul W Hruz

#	Article	IF	CITATIONS
55	3-Hydroxy-3-methylglutaryldithio-CoA: utility of an alternative substrate in elucidation of a role for HMG-CoA lyase's cation activator. BBA - Proteins and Proteomics, 1993, 1162, 149-154.	2.1	9
56	Avian 3â€hydroxyâ€3â€methylglutarylâ€CoA lyase: Sensitivity of enzyme activity to thiol/disulfide exchange and identification of proximal reactive cysteines. Protein Science, 1992, 1, 1144-1153.	7.6	26
57	3-Hydroxy-3-methylglutaryl coenzyme A lyase: affinity labeling of the Pseudomonas mevalonii enzyme and assignment of cysteine-237 to the active site. Biochemistry, 1992, 31, 6842-6847.	2.5	25