
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3103130/publications.pdf Version: 2024-02-01

MARC WI HOWARD

#	Article	IF	CITATIONS
1	A Distributed Representation of Temporal Context. Journal of Mathematical Psychology, 2002, 46, 269-299.	1.8	810
2	Theta and Gamma Oscillations during Encoding Predict Subsequent Recall. Journal of Neuroscience, 2003, 23, 10809-10814.	3.6	698
3	Gamma Oscillations Correlate with Working Memory Load in Humans. Cerebral Cortex, 2003, 13, 1369-1374.	2.9	658
4	Gradual Changes in Hippocampal Activity Support Remembering the Order of Events. Neuron, 2007, 56, 530-540.	8.1	343
5	Contextual variability and serial position effects in free recall Journal of Experimental Psychology: Learning Memory and Cognition, 1999, 25, 923-941.	0.9	277
6	A context-based theory of recency and contiguity in free recall Psychological Review, 2008, 115, 893-912.	3.8	256
7	The Temporal Context Model in Spatial Navigation and Relational Learning: Toward a Common Explanation of Medial Temporal Lobe Function Across Domains Psychological Review, 2005, 112, 75-116.	3.8	247
8	When Does Semantic Similarity Help Episodic Retrieval?. Journal of Memory and Language, 2002, 46, 85-98.	2.1	181
9	Ventral Hippocampal Neurons Are Shaped by Experience to Represent Behaviorally Relevant Contexts. Journal of Neuroscience, 2013, 33, 8079-8087.	3.6	152
10	A Unified Mathematical Framework for Coding Time, Space, and Sequences in the Hippocampal Region. Journal of Neuroscience, 2014, 34, 4692-4707.	3.6	152
11	The Same Hippocampal CA1 Population Simultaneously Codes Temporal Information over Multiple Timescales. Current Biology, 2018, 28, 1499-1508.e4.	3.9	150
12	Time Cells in Hippocampal Area CA3. Journal of Neuroscience, 2016, 36, 7476-7484.	3.6	149
13	The hippocampus, time, and memory across scales Journal of Experimental Psychology: General, 2013, 142, 1211-1230.	2.1	122
14	A Scale-Invariant Internal Representation of Time. Neural Computation, 2012, 24, 134-193.	2.2	109
15	Age dissociates recency and lag recency effects in free recall Journal of Experimental Psychology: Learning Memory and Cognition, 2002, 28, 530-540.	0.9	102
16	A distributed representation of internal time Psychological Review, 2015, 122, 24-53.	3.8	102
17	Time and space in the hippocampus. Brain Research, 2015, 1621, 345-354.	2.2	102
18	Age dissociates recency and lag recency effects in free recall Journal of Experimental Psychology: Learning Memory and Cognition, 2002, 28, 530-540.	0.9	101

#	Article	IF	CITATIONS
19	The temporal contiguity effect predicts episodic memory performance. Memory and Cognition, 2010, 38, 689-699.	1.6	100
20	Aging selectively impairs recollection in recognition memory for pictures: Evidence from modeling and receiver operating characteristic curves Psychology and Aging, 2006, 21, 96-106.	1.6	89
21	Aging and contextual binding: Modeling recency and lag recency effects with the temporal context model. Psychonomic Bulletin and Review, 2006, 13, 439-445.	2.8	81
22	Sequential Firing Codes for Time in Rodent Medial Prefrontal Cortex. Cerebral Cortex, 2017, 27, 5663-5671.	2.9	81
23	Temporal associations and prior-list intrusions in free recall Journal of Experimental Psychology: Learning Memory and Cognition, 2006, 32, 792-804.	0.9	75
24	Ensembles of human MTL neurons "jump back in time―in response to a repeated stimulus. Hippocampus, 2012, 22, 1833-1847.	1.9	74
25	Shadows of the Past: Temporal Retrieval Effects in Recognition Memory. Psychological Science, 2005, 16, 898-904.	3.3	73
26	Some-or-none recollection: Evidence from item and source memory Journal of Experimental Psychology: General, 2010, 139, 341-364.	2.1	70
27	Scopolamine impairs human recognition memory: Data and modeling Behavioral Neuroscience, 2003, 117, 526-539.	1.2	68
28	Human Episodic Memory Retrieval Is Accompanied by a Neural Contiguity Effect. Journal of Neuroscience, 2018, 38, 4200-4211.	3.6	67
29	The persistence of memory: Contiguity effects across hundreds of seconds. Psychonomic Bulletin and Review, 2008, 15, 58-63.	2.8	66
30	A temporal record of the past with a spectrum of time constants in the monkey entorhinal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20274-20283.	7.1	59
31	Spacing and lag effects in free recall of pure lists. Psychonomic Bulletin and Review, 2005, 12, 159-164.	2.8	58
32	Compressed Timeline of Recent Experience in Monkey Lateral Prefrontal Cortex. Journal of Cognitive Neuroscience, 2018, 30, 935-950.	2.3	52
33	Constructing Semantic Representations From a Gradually Changing Representation of Temporal Context. Topics in Cognitive Science, 2011, 3, 48-73.	1.9	45
34	Memory as Perception of the Past: Compressed Time inMind and Brain. Trends in Cognitive Sciences, 2018, 22, 124-136.	7.8	45
35	A Simple biophysically plausible model for long time constants in single neurons. Hippocampus, 2015, 25, 27-37.	1.9	44
36	A neural microcircuit model for a scalable scaleâ€invariant representation of time. Hippocampus, 2019, 29, 260-274.	1.9	44

3

#	Article	IF	CITATIONS
37	Bridging the gap: Transitive associations between items presented in similar temporal contexts Journal of Experimental Psychology: Learning Memory and Cognition, 2009, 35, 391-407.	0.9	39
38	Conjunctive representation of what and when in monkey hippocampus and lateral prefrontal cortex during an associative memory task. Hippocampus, 2020, 30, 1332-1346.	1.9	29
39	Temporal and spatial context in the mind and brain. Current Opinion in Behavioral Sciences, 2017, 17, 14-19.	3.9	28
40	Associative processes in immediate recency. Memory and Cognition, 2007, 35, 1700-1711.	1.6	26
41	Effects of age on contextually mediated associations in paired associate learning Psychology and Aging, 2007, 22, 846-857.	1.6	25
42	Medial Temporal Lobe Amnesia Is Associated with a Deficit in Recovering Temporal Context. Journal of Cognitive Neuroscience, 2019, 31, 236-248.	2.3	25
43	Scaling behavior in the temporal context model. Journal of Mathematical Psychology, 2004, 48, 230-238.	1.8	21
44	Neural scaling laws for an uncertain world Psychological Review, 2018, 125, 47-58.	3.8	19
45	Timing using temporal context. Brain Research, 2010, 1365, 3-17.	2.2	18
46	Neural Mechanism to Simulate a Scale-Invariant Future. Neural Computation, 2016, 28, 2594-2627.	2.2	16
47	Place from time: Reconstructing position from a distributed representation of temporal context. Neural Networks, 2005, 18, 1150-1162.	5.9	15
48	ls working memory stored along a logarithmic timeline? Converging evidence from neuroscience, behavior and models. Neurobiology of Learning and Memory, 2018, 153, 104-110.	1.9	14
49	In a Temporally Segmented Experience Hippocampal Neurons Represent Temporally Drifting Context But Not Discrete Segments. Journal of Neuroscience, 2019, 39, 6936-6952.	3.6	13
50	Putting short-term memory into context: Reply to Usher, Davelaar, Haarmann, and Goshen-Gottstein (2008) Psychological Review, 2008, 115, 1119-1125.	3.8	12
51	Estimating Scale-Invariant Future in Continuous Time. Neural Computation, 2019, 31, 681-709.	2.2	12
52	Sequential learning using temporal context. Journal of Mathematical Psychology, 2009, 53, 474-485.	1.8	11
53	Reply to Farrell and Lewandowsky: Recency—contiguity interactions predicted by the temporal context model. Psychonomic Bulletin and Review, 2009, 16, 973-984.	2.8	11
54	Mathematical learning theory through time. Journal of Mathematical Psychology, 2014, 59, 18-29.	1.8	10

#	Article	IF	CITATIONS
55	Retrieved context and the discovery of semantic structure. Advances in Neural Information Processing Systems, 2008, 20, 1193-1200.	2.8	10
56	A causal contiguity effect that persists across time scales Journal of Experimental Psychology: Learning Memory and Cognition, 2013, 39, 297-303.	0.9	9
57	Evidence Accumulation in a Laplace Domain Decision Space. Computational Brain & Behavior, 2018, 1, 237-251.	1.7	7
58	Consistent population activity on the scale of minutes in the mouse hippocampus. Hippocampus, 2022, 32, 359-372.	1.9	5
59	Postscript: Distinguishing between temporal context and short-term store Psychological Review, 2008, 115, 1125-1126.	3.8	4
60	Generation of Scale-Invariant Sequential Activity in Linear Recurrent Networks. Neural Computation, 2020, 32, 1379-1407.	2.2	3
61	Predicting the Future With a Scale-Invariant Temporal Memory for the Past. Neural Computation, 2022, 34, 642-685.	2.2	3
62	Time-conjunctive representations of future events. Memory and Cognition, 2020, 48, 672-682.	1.6	2
63	Howard Eichenbaum 1947–2017. Nature Neuroscience, 2017, 20, 1432-1433.	14.8	1
64	Scale-Free Memory to Swiftly Generate Fuzzy Future Predictions. Advances in Intelligent Systems and Computing, 2015, , 185-194.	0.6	0
65	The legacy of Adam Johnson. Hippocampus, 2018, 28, 453-454.	1.9	0
66	Compressed Timeline of Recent Experience in Monkey IPFC. SSRN Electronic Journal, 0, , .	0.4	0