List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3102848/publications.pdf Version: 2024-02-01

Κλ7ΙΙΙΙΕ ΕΙΙΙΙΤΛ

#	Article	IF	CITATIONS
1	Broadly tunable lens-coupled nonlinear quantum cascade lasers in the sub-THz to THz frequency range. Photonics Research, 2022, 10, 703.	7.0	11
2	Ultimate response time in mid-infrared high-speed low-noise quantum cascade detectors. Applied Physics Letters, 2021, 118, .	3.3	16
3	Direct Observation of Terahertz Frequency Comb Generation in Difference-Frequency Quantum Cascade Lasers. Applied Sciences (Switzerland), 2021, 11, 1416.	2.5	14
4	Spectroscopic Imaging with an Ultra-Broadband (1–4 THz) Compact Terahertz Difference-Frequency Generation Source. Electronics (Switzerland), 2021, 10, 336.	3.1	3
5	Spectroscopic imaging with a compact terahertz difference frequency generation source. , 2021, , .		0
6	Polarization Imaging of Liquid Crystal Polymer Using Terahertz Difference-Frequency Generation Source. Applied Sciences (Switzerland), 2021, 11, 10260.	2.5	4
7	Spectral imaging of pharmaceutical materials with a compact terahertz difference-frequency generation semiconductor source. Analytical Methods, 2021, 13, 5549-5554.	2.7	3
8	Temperature-Insensitive Imaging Properties of a Broadband Terahertz Nonlinear Quantum Cascade Laser. Applied Sciences (Switzerland), 2020, 10, 5926.	2.5	2
9	Detection of single human hairs with a terahertz nonlinear quantum cascade laser. Applied Optics, 2020, 59, 9169.	1.8	1
10	Room temperature, single-mode 1.0 THz semiconductor source based on long-wavelength infrared quantum-cascade laser. Applied Physics Express, 2020, 13, 112001.	2.4	10
11	Room temperature terahertz nonlinear quantum cascade lasers and their applications. , 2020, , .		0
12	Room temperature, single-mode 1.0 THz nonlinear quantum-cascade laser. , 2020, , .		0
13	Sub-terahertz and terahertz generation in long-wavelength quantum cascade lasers. Nanophotonics, 2019, 8, 2235-2241.	6.0	47
14	Stacked quantum cascade laser and detector structure for a monolithic mid-infrared sensing device. Applied Physics Letters, 2019, 115, .	3.3	13
15	Sub-terahertz Quantum-cascade Laser Source based on Difference-frequency Generation. , 2019, , .		0
16	Free-standing meta-surface on ultrathin Si substrate for high-transmission phase shifts in the 3.0-THz band. , 2019, , .		0
17	Terahertz imaging with room-temperature terahertz difference-frequency quantum-cascade laser sources. Optics Express, 2019, 27, 1884.	3.4	26
18	Room-temperature monolithic quantum-cascade laser sources operating from 1.1 to 1.5 THz. , 2019, , .		0

#	Article	IF	CITATIONS
19	Low-frequency Terahertz Generation based on High-Power Quantum Cascade Lasers Emitting at $\hat{l} \times \hat{l} \times \hat{l} \times \hat{l}_{2} + \hat{l}_{2}$		0
20	Pharmaceutical analysis using broadband terahertz quantum cascade laser sources based on difference frequency generation. , 2018, , .		0
21	Imaging Using Terahertz Quantum Cascade Laser Sources Based on Difference Frequency Generation. , 2018, , .		0
22	Recent progress in terahertz difference-frequency quantum cascade laser sources. Nanophotonics, 2018, 7, 1795-1817.	6.0	67
23	Double-metal waveguide terahertz difference-frequency generation quantum cascade lasers with surface grating outcouplers. Applied Physics Letters, 2018, 113, 161102.	3.3	10
24	Difference-Frequency Generation Terahertz Quantum Cascade Lasers with Surface Grating Outcouplers. , 2018, , .		1
25	Development of THz light sources based on QCL technology. , 2018, , .		Ο
26	Narrow-linewidth ultra-broadband terahertz sources based on difference-frequency generation in mid-infrared quantum cascade lasers. , 2017, , .		2
27	Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation. Science Advances, 2017, 3, e1603317.	10.3	33
28	Low-threshold room-temperature continuous-wave operation of a terahertz difference-frequency quantum cascade laser source. Applied Physics Express, 2017, 10, 082102.	2.4	22
29	Recent Research Progress on Quantum Cascade Laser Materials and Structures. The Review of Laser Engineering, 2017, 45, 735.	0.0	Ο
30	1.9 THz Difference-Frequency Generation in Mid-Infrared Quantum Cascade Lasers with Grating Outcouplers. , 2017, , .		0
31	Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation. Optics Express, 2016, 24, 16357.	3.4	44
32	High photoresponse in room temperature quantum cascade detector based on coupled quantum well design. Applied Physics Letters, 2016, 109, .	3.3	25
33	Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region. Applied Physics Letters, 2015, 106, .	3.3	56
34	Broadband tuning of continuous wave quantum cascade lasers in long wavelength (> 10μm) range. Optics Express, 2014, 22, 19930.	3.4	18
35	Electrical flicker-noise generated by filling and emptying of impurity states in injectors of quantum-cascade lasers. Journal of Applied Physics, 2014, 116, 183106.	2.5	11
36	Investigation of Tunable Single-Mode Quantum Cascade Lasers Via Surface-Acoustic-Wave Modulation. IEEE Journal of Quantum Electronics, 2013, 49, 1053-1061.	1.9	2

#	Article	IF	CITATIONS
37	High-power low-divergence tapered quantum cascade lasers with plasmonic collimators. Applied Physics Letters, 2013, 102, .	3.3	14
38	External ring-cavity quantum cascade lasers. Applied Physics Letters, 2013, 102, .	3.3	21
39	Extremely temperature-insensitive continuous-wave broadband quantum cascade lasers. , 2013, , .		0
40	Indirectly pumped 37 THz InGaAs/InAlAs quantum-cascade lasers grown by metal-organic vapor-phase epitaxy. Optics Express, 2012, 20, 20647.	3.4	24
41	Indirectly Pumped THz InGaAs/InAlAs Quantum-Cascade Lasers Grown by Metal-Organic Vapor-Phase Epitaxy. , 2012, , .		0
42	Super-linear performance of Dual-upper-state Quantum-Cascade Lasers. , 2012, , .		0
43	Broadband continuous-wave tuning of external cavity anticrossed dual-upper-state quantum cascade lasers. Proceedings of SPIE, 2012, , .	0.8	2
44	Extremely temperature-insensitive continuous-wave quantum cascade lasers. Applied Physics Letters, 2012, 101, .	3.3	26
45	Broad-gain (Δλ/λ_0~04), temperature-insensitive (T_0~510K) quantum cascade lasers. Optics Express, 2011, 19, 2694.	3.4	45
46	Broadband Tuning of External Cavity Dual-Upper-State Quantum-Cascade Lasers in Continuous Wave Operation. Applied Physics Express, 2011, 4, 102101.	2.4	24
47	Extremely Broad-gain Quantum-Cascade Lasers based on Dual-upper-state design. , 2011, , .		0
48	High-performance quantum cascade lasers with wide electroluminescence (â^¼600â€,cmâ^'1), operating in continuous-wave above 100 °C. Applied Physics Letters, 2011, 98, 231102.	3.3	30
49	3-4 THz InGaAs/InAlAs Quantum-Cascade Lasers based on the Indirect Pump Scheme. , 2011, , .		0
50	High-Performance \$lambda sim 8.6~mu {m m}\$ Quantum Cascade Lasers With Single Phonon-Continuum Depopulation Structures. IEEE Journal of Quantum Electronics, 2010, 46, 683-688.	1.9	33
51	Extremely high T-values (â^¼450â€,K) of long-wavelength (â^¼15â€,μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme. Applied Physics Letters, 2010, 97, .	3.3	39
52	High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design. Applied Physics Letters, 2010, 96, .	3.3	71
53	Quantum cascade lasers based on single phonon-continuum depopulation structures. Proceedings of SPIE, 2009, , .	0.8	4
54	Indirect Pump Scheme for Quantum-Cascade Lasers: Electron Transport and Very High TO-Values. , 2009, , .		0

4

#	Article	IF	CITATIONS
55	Indirect pump scheme for quantum cascade lasers: dynamics of electron-transport and very high T0-values. Optics Express, 2008, 16, 20748.	3.4	67
56	Theory of the Intrinsic Linewidth of Quantum-Cascade Lasers: Hidden Reason for the Narrow Linewidth and Line-Broadening by Thermal Photons. IEEE Journal of Quantum Electronics, 2008, 44, 12-29.	1.9	106
57	Quantum cascade Laser: For application of spectroscopic analysis. The Review of Laser Engineering, 2008, 36, 142-143.	0.0	0
58	Development of DFB Quantum Cascade Lasers and their Applications. The Review of Laser Engineering, 2008, 36, 75-79.	0.0	0
59	Room Temperature, Continuous-Wave Operation of Quantum Cascade Lasers with Single Phonon Resonance-Continuum Depopulation Structures. , 2007, , .		0
60	InAs Quantum Cascade Lasers Based on Coupled Quantum Well Structures. Japanese Journal of Applied Physics, 2005, 44, 2572-2574.	1.5	0
61	Mid-infrared InAsâ^•AlGaSb superlattice quantum-cascade lasers. Applied Physics Letters, 2005, 87, 211113.	3.3	17
62	A Low Threshold Current Density InAs/AlGaSb Superlattice Quantum Cascade Laser Operating at 14 Âμm. Japanese Journal of Applied Physics, 2004, 43, L879-L881.	1.5	17