Kazuue Fujita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3102848/publications.pdf

Version: 2024-02-01

393982 433756 62 984 19 31 citations h-index g-index papers 63 63 63 585 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Theory of the Intrinsic Linewidth of Quantum-Cascade Lasers: Hidden Reason for the Narrow Linewidth and Line-Broadening by Thermal Photons. IEEE Journal of Quantum Electronics, 2008, 44, 12-29.	1.0	106
2	High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design. Applied Physics Letters, 2010, 96, .	1.5	71
3	Indirect pump scheme for quantum cascade lasers: dynamics of electron-transport and very high T0-values. Optics Express, 2008, 16, 20748.	1.7	67
4	Recent progress in terahertz difference-frequency quantum cascade laser sources. Nanophotonics, 2018, 7, 1795-1817.	2.9	67
5	Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region. Applied Physics Letters, 2015, 106, .	1.5	56
6	Sub-terahertz and terahertz generation in long-wavelength quantum cascade lasers. Nanophotonics, 2019, 8, 2235-2241.	2.9	47
7	Broad-gain (Δλ/λ_0~04), temperature-insensitive (T_0~510K) quantum cascade lasers. Optics Express, 2011, 19, 2694.	1.7	45
8	Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation. Optics Express, 2016, 24, 16357.	1.7	44
9	Extremely high T-values (â^¼450â€,K) of long-wavelength (â^¼15â€,μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme. Applied Physics Letters, 2010, 97, .	1.5	39
10	High-Performance \$lambda sim 8.6~mu {m m}\$ Quantum Cascade Lasers With Single Phonon-Continuum Depopulation Structures. IEEE Journal of Quantum Electronics, 2010, 46, 683-688.	1.0	33
11	Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation. Science Advances, 2017, 3, e1603317.	4.7	33
12	High-performance quantum cascade lasers with wide electroluminescence (â^¼600â€,cmâ^'1), operating in continuous-wave above 100 °C. Applied Physics Letters, 2011, 98, 231102.	1.5	30
13	Extremely temperature-insensitive continuous-wave quantum cascade lasers. Applied Physics Letters, 2012, 101, .	1.5	26
14	Terahertz imaging with room-temperature terahertz difference-frequency quantum-cascade laser sources. Optics Express, 2019, 27, 1884.	1.7	26
15	High photoresponse in room temperature quantum cascade detector based on coupled quantum well design. Applied Physics Letters, 2016, 109, .	1.5	25
16	Broadband Tuning of External Cavity Dual-Upper-State Quantum-Cascade Lasers in Continuous Wave Operation. Applied Physics Express, 2011, 4, 102101.	1.1	24
17	Indirectly pumped 37 THz InGaAs/InAlAs quantum-cascade lasers grown by metal-organic vapor-phase epitaxy. Optics Express, 2012, 20, 20647.	1.7	24
18	Low-threshold room-temperature continuous-wave operation of a terahertz difference-frequency quantum cascade laser source. Applied Physics Express, 2017, 10, 082102.	1.1	22

#	Article	IF	Citations
19	External ring-cavity quantum cascade lasers. Applied Physics Letters, 2013, 102, .	1.5	21
20	Broadband tuning of continuous wave quantum cascade lasers in long wavelength (> 10μm) range. Optics Express, 2014, 22, 19930.	1.7	18
21	A Low Threshold Current Density InAs/AlGaSb Superlattice Quantum Cascade Laser Operating at 14 Âμm. Japanese Journal of Applied Physics, 2004, 43, L879-L881.	0.8	17
22	Mid-infrared InAsâ^•AlGaSb superlattice quantum-cascade lasers. Applied Physics Letters, 2005, 87, 211113.	1.5	17
23	Ultimate response time in mid-infrared high-speed low-noise quantum cascade detectors. Applied Physics Letters, 2021, 118, .	1.5	16
24	High-power low-divergence tapered quantum cascade lasers with plasmonic collimators. Applied Physics Letters, 2013, 102, .	1.5	14
25	Direct Observation of Terahertz Frequency Comb Generation in Difference-Frequency Quantum Cascade Lasers. Applied Sciences (Switzerland), 2021, 11, 1416.	1.3	14
26	Stacked quantum cascade laser and detector structure for a monolithic mid-infrared sensing device. Applied Physics Letters, $2019,115,.$	1.5	13
27	Electrical flicker-noise generated by filling and emptying of impurity states in injectors of quantum-cascade lasers. Journal of Applied Physics, 2014, 116, 183106.	1.1	11
28	Broadly tunable lens-coupled nonlinear quantum cascade lasers in the sub-THz to THz frequency range. Photonics Research, 2022, 10, 703.	3.4	11
29	Double-metal waveguide terahertz difference-frequency generation quantum cascade lasers with surface grating outcouplers. Applied Physics Letters, 2018, 113, 161102.	1.5	10
30	Room temperature, single-mode 1.0 THz semiconductor source based on long-wavelength infrared quantum-cascade laser. Applied Physics Express, 2020, 13, 112001.	1.1	10
31	Quantum cascade lasers based on single phonon-continuum depopulation structures. Proceedings of SPIE, 2009, , .	0.8	4
32	Polarization Imaging of Liquid Crystal Polymer Using Terahertz Difference-Frequency Generation Source. Applied Sciences (Switzerland), 2021, 11, 10260.	1.3	4
33	Spectroscopic Imaging with an Ultra-Broadband (1–4 THz) Compact Terahertz Difference-Frequency Generation Source. Electronics (Switzerland), 2021, 10, 336.	1.8	3
34	Spectral imaging of pharmaceutical materials with a compact terahertz difference-frequency generation semiconductor source. Analytical Methods, 2021, 13, 5549-5554.	1.3	3
35	Broadband continuous-wave tuning of external cavity anticrossed dual-upper-state quantum cascade lasers. Proceedings of SPIE, 2012, , .	0.8	2
36	Investigation of Tunable Single-Mode Quantum Cascade Lasers Via Surface-Acoustic-Wave Modulation. IEEE Journal of Quantum Electronics, 2013, 49, 1053-1061.	1.0	2

#	Article	IF	Citations
37	Narrow-linewidth ultra-broadband terahertz sources based on difference-frequency generation in mid-infrared quantum cascade lasers. , 2017 , , .		2
38	Temperature-Insensitive Imaging Properties of a Broadband Terahertz Nonlinear Quantum Cascade Laser. Applied Sciences (Switzerland), 2020, 10, 5926.	1.3	2
39	Detection of single human hairs with a terahertz nonlinear quantum cascade laser. Applied Optics, 2020, 59, 9169.	0.9	1
40	Difference-Frequency Generation Terahertz Quantum Cascade Lasers with Surface Grating Outcouplers. , 2018, , .		1
41	InAs Quantum Cascade Lasers Based on Coupled Quantum Well Structures. Japanese Journal of Applied Physics, 2005, 44, 2572-2574.	0.8	0
42	Room Temperature, Continuous-Wave Operation of Quantum Cascade Lasers with Single Phonon Resonance-Continuum Depopulation Structures., 2007,,.		0
43	Quantum cascade Laser: For application of spectroscopic analysis. The Review of Laser Engineering, 2008, 36, 142-143.	0.0	0
44	Development of DFB Quantum Cascade Lasers and their Applications. The Review of Laser Engineering, 2008, 36, 75-79.	0.0	0
45	Extremely Broad-gain Quantum-Cascade Lasers based on Dual-upper-state design. , 2011, , .		0
46	Indirectly Pumped THz InGaAs/InAlAs Quantum-Cascade Lasers Grown by Metal-Organic Vapor-Phase Epitaxy. , 2012, , .		0
47	Super-linear performance of Dual-upper-state Quantum-Cascade Lasers. , 2012, , .		0
48	Extremely temperature-insensitive continuous-wave broadband quantum cascade lasers., 2013,,.		0
49	Low-frequency Terahertz Generation based on High-Power Quantum Cascade Lasers Emitting at l̂» <inf>~</inf> 14 l̂¼m., 2018,,.		0
50	Pharmaceutical analysis using broadband terahertz quantum cascade laser sources based on difference frequency generation. , 2018 , , .		0
51	Imaging Using Terahertz Quantum Cascade Laser Sources Based on Difference Frequency Generation. , 2018, , .		0
52	Sub-terahertz Quantum-cascade Laser Source based on Difference-frequency Generation., 2019,,.		0
53	Free-standing meta-surface on ultrathin Si substrate for high-transmission phase shifts in the 3.0-THz band. , 2019, , .		0
54	Spectroscopic imaging with a compact terahertz difference frequency generation source., 2021,,.		0

#	Article	IF	CITATIONS
55	Indirect Pump Scheme for Quantum-Cascade Lasers: Electron Transport and Very High TO-Values. , 2009,		O
56	3-4 THz InGaAs/InAlAs Quantum-Cascade Lasers based on the Indirect Pump Scheme. , 2011, , .		0
57	Recent Research Progress on Quantum Cascade Laser Materials and Structures. The Review of Laser Engineering, 2017, 45, 735.	0.0	O
58	1.9 THz Difference-Frequency Generation in Mid-Infrared Quantum Cascade Lasers with Grating Outcouplers. , 2017, , .		0
59	Development of THz light sources based on QCL technology. , 2018, , .		0
60	Room-temperature monolithic quantum-cascade laser sources operating from 1.1 to 1.5 THz., 2019,,.		0
61	Room temperature terahertz nonlinear quantum cascade lasers and their applications., 2020,,.		0
62	Room temperature, single-mode 1.0 THz nonlinear quantum-cascade laser. , 2020, , .		0