
Andy Greenfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3102685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gadd45g is required for timely Sry expression independently of RSPO1 activity. Reproduction, 2022, 163, 333-340.	1.1	5
2	Origin, specification and differentiation of a rare supporting-like lineage in the developing mouse gonad. Science Advances, 2022, 8, .	4.7	32
3	Making sense of heritable human genome editing: Scientific and ethical considerations. Progress in Molecular Biology and Translational Science, 2021, 182, 1-28.	0.9	3
4	Cloning, mitochondrial replacement and genome editing: 25 years of ethical debate since Dolly. Reproduction, 2021, 162, F69-F78.	1.1	2
5	The molecular genetic basis of fetal granulosa cell development. Current Opinion in Endocrine and Metabolic Research, 2021, 18, 1-7.	0.6	3
6	ISSCR Guidelines for Stem Cell Research and Clinical Translation: The 2021 update. Stem Cell Reports, 2021, 16, 1398-1408.	2.3	134
7	Arrest of WNT/β-catenin signaling enables the transition from pluripotent to differentiated germ cells in mouse ovaries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
8	Broad-spectrum XX and XY gonadal dysgenesis in patients with a homozygous L193S variant in PPP2R3C. European Journal of Endocrinology, 2021, 186, 65-72.	1.9	1
9	Pathogenic variants in the DEAH-box RNA helicase DHX37 are a frequent cause of 46,XY gonadal dysgenesis and 46,XY testicular regression syndrome. Genetics in Medicine, 2020, 22, 150-159.	1.1	34
10	Protection Against XY Gonadal Sex Reversal by a Variant Region on Mouse Chromosome 13. Genetics, 2020, 214, 467-477.	1.2	6
11	Addressing gaps in care of people with conditions affecting sex development and maturation. Nature Reviews Endocrinology, 2019, 15, 615-622.	4.3	30
12	Dissecting Cell Lineage Specification and Sex Fate Determination in Gonadal Somatic Cells Using Single-Cell Transcriptomics. Cell Reports, 2019, 26, 3272-3283.e3.	2.9	137
13	Characterizing the bipotential mammalian gonad. Current Topics in Developmental Biology, 2019, 134, 167-194.	1.0	63
14	Male mice lacking ADAMTS-16 are fertile but exhibit testes of reduced weight. Scientific Reports, 2019, 9, 17195.	1.6	8
15	Loss of p300 and CBP disrupts histone acetylation at the mouse Sry promoter and causes XY gonadal sex reversal. Human Molecular Genetics, 2018, 27, 190-198.	1.4	39
16	Characterisation and use of a functional Gadd45g bacterial artificial chromosome. Scientific Reports, 2018, 8, 17318.	1.6	2
17	ZNRF3 functions in mammalian sex determination by inhibiting canonical WNT signaling. Proceedings of the United States of America, 2018, 115, 5474-5479.	3.3	62

Carry on editing. British Medical Bulletin, 2018, 127, 23-31.

2.7 10

ANDY GREENFIELD

#	Article	IF	CITATIONS
19	The Molecular Control of Testis Determination. , 2018, , 93-99.		Ο
20	CRISPR-Cas9-Mediated Mutagenesis: Mind the Gap?. CRISPR Journal, 2018, 1, 263-264.	1.4	3
21	Editing mammalian genomes: ethical considerations. Mammalian Genome, 2017, 28, 388-393.	1.0	8
22	Assisted reproductive technologies to prevent human mitochondrial disease transmission. Nature Biotechnology, 2017, 35, 1059-1068.	9.4	87
23	Genetic Disruption of 21-Hydroxylase in Zebrafish Causes Interrenal Hyperplasia. Endocrinology, 2017, 158, 4165-4173.	1.4	24
24	The Reproductive System. , 2016, , 121-132.		0
25	Genetic Analyses Reveal Functions for MAP2K3 and MAP2K6 in Mouse Testis Determination1. Biology of Reproduction, 2016, 94, 103.	1.2	18
26	The Gonadal Supporting Cell Lineage and Mammalian Sex Determination: The Differentiation of Sertoli and Granulosa Cells. Results and Problems in Cell Differentiation, 2016, 58, 47-66.	0.2	14
27	Understanding sex determination in the mouse: genetics, epigenetics and the story of mutual antagonisms. Journal of Genetics, 2015, 94, 585-590.	0.4	16
28	A Novel Mouse Fgfr2 Mutant, Hobbyhorse (hob), Exhibits Complete XY Gonadal Sex Reversal. PLoS ONE, 2014, 9, e100447.	1.1	26
29	Transgenic expression of Map3k4 rescues T-associated sex reversal (Tas) in mice. Human Molecular Genetics, 2014, 23, 3035-3044.	1.4	24
30	Characterising Novel Pathways in Testis Determination Using Mouse Genetics. Sexual Development, 2014, 8, 199-207.	1.1	23
31	Scribble is required for normal epithelial cell–cell contacts and lumen morphogenesis in the mammalian lung. Developmental Biology, 2013, 373, 267-280.	0.9	71
32	Sexual development. , 2013, , 8-17.		1
33	Secreted frizzled-related protein 5 suppresses adipocyte mitochondrial metabolism through WNT inhibition. Journal of Clinical Investigation, 2012, 122, 2405-2416.	3.9	141
34	Gadd45Î ³ and Map3k4 Interactions Regulate Mouse Testis Determination via p38 MAPK-Mediated Control of Sry Expression. Developmental Cell, 2012, 23, 1020-1031.	3.1	122
35	The molecular and cellular basis of gonadal sex reversal in mice and humans. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 559-577.	5.9	51
36	Haploinsufficiency of the murine Col3a1 locus causes aortic dissection: a novel model of the vascular type of Ehlers–Danlos syndrome. Cardiovascular Research, 2011, 90, 182-190.	1.8	68

ANDY GREENFIELD

#	Article	lF	CITATIONS
37	Pkd1l1 establishes left-right asymmetry and physically interacts with Pkd2. Development (Cambridge), 2011, 138, 1131-1142.	1.2	156
38	SCRIB expression is deregulated in human prostate cancer, and its deficiency in mice promotes prostate neoplasia. Journal of Clinical Investigation, 2011, 121, 4257-4267.	3.9	153
39	Minor Abnormalities of Testis Development in Mice Lacking the Gene Encoding the MAPK Signalling Component, MAP3K1. PLoS ONE, 2011, 6, e19572.	1.1	55
40	Mutations in MAP3K1 Cause 46,XY Disorders of Sex Development and Implicate a Common Signal Transduction Pathway in Human Testis Determination. American Journal of Human Genetics, 2010, 87, 898-904.	2.6	155
41	The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis. Human Molecular Genetics, 2010, 19, 2251-2267.	1.4	146
42	Loss of Mitogen-Activated Protein Kinase Kinase Kinase 4 (MAP3K4) Reveals a Requirement for MAPK Signalling in Mouse Sex Determination. PLoS Biology, 2009, 7, e1000196.	2.6	130
43	Mouse hitchhiker mutants have spina bifida, dorso-ventral patterning defects and polydactyly: identification of Tulp3 as a novel negative regulator of the Sonic hedgehog pathway. Human Molecular Genetics, 2009, 18, 1719-1739.	1.4	88
44	Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract. Mammalian Genome, 2009, 20, 140-151.	1.0	82
45	Sfrp1 and Sfrp2 are required for normal male sexual development in mice. Developmental Biology, 2009, 326, 273-284.	0.9	84
46	ENU mutagenesis as a tool for understanding lung development and disease. Biochemical Society Transactions, 2009, 37, 838-842.	1.6	12
47	Using DNA Microarrays. Methods in Molecular Biology, 2008, 461, 605-629.	0.4	5
48	The Maestro (Mro) Gene Is Dispensable for Normal Sexual Development and Fertility in Mice. PLoS ONE, 2008, 3, e4091.	1.1	7
49	Novel gene expression patterns along the proximo-distal axis of the mouse embryo before gastrulation. BMC Developmental Biology, 2007, 7, 8.	2.1	34
50	Sexually dimorphic expression of secreted frizzled-related (SFRP) genes in the developing mouse Müllerian duct. Molecular Reproduction and Development, 2006, 73, 1008-1016.	1.0	21
51	Regulation of hepatic metabolic pathways by the orphan nuclear receptor SHP. EMBO Journal, 2005, 24, 2624-2633.	3.5	129
52	Dissecting the genetic complexity of human 6p deletion syndromes by using a region-specific, phenotype-driven mouse screen. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12477-12482.	3.3	28
53	SW-ARRAY: a dynamic programming solution for the identification of copy-number changes in genomic DNA using array comparative genome hybridization data. Nucleic Acids Research, 2005, 33, 3455-3464.	6.5	87
54	LIMaS: the JAVA-based application and database for microarray experiment tracking. Mammalian Genome, 2004, 15, 740-747.	1.0	4

ANDY GREENFIELD

#	Article	IF	CITATIONS
55	A gene-driven ENU-based approach to generating an allelic series in any gene. Mammalian Genome, 2004, 15, 585-591.	1.0	148
56	Candidate testis-determining gene, Maestro (Mro), encodes a novel HEAT repeat protein. Developmental Dynamics, 2003, 227, 600-607.	0.8	25
57	Zic2 is required for neural crest formation and hindbrain patterning during mouse development. Developmental Biology, 2003, 264, 391-406.	0.9	107
58	Single primer amplification (SPA) of cDNA for microarray expression analysis. Nucleic Acids Research, 2003, 31, 9e-9.	6.5	55
59	DNA microarrays and development. Human Molecular Genetics, 2003, 12, 1R-8.	1.4	45
60	Sexually dimorphic expression of Gata-2 during mouse gonad development. Mechanisms of Development, 2002, 111, 159-162.	1.7	42
61	Expression of a novel mammalian epidermal growth factor-related gene during mouse neural development. Mechanisms of Development, 2001, 102, 209-211.	1.7	44
62	Applications of DNA microarrays to the transcriptional analysis of mammalian genomes. Mammalian Genome, 2000, 11, 609-613.	1.0	14
63	Cloning, Mapping, and Expression Analysis of a Gene Encoding a Novel Mammalian EGF-Related Protein (SCUBE1). Genomics, 2000, 70, 74-81.	1.3	72
64	Groucho/transducin-like Enhancer of split (TLE) family members interact with the yeast transcriptional co-repressor SSN6 and mammalian SSN6-related proteins: implications for evolutionary conservation of transcription repression mechanisms. Biochemical Journal, 1999, 337, 13-17.	1.7	51
65	Groucho/transducin-like Enhancer of split (TLE) family members interact with the yeast transcriptional co-repressor SSN6 and mammalian SSN6-related proteins: implications for evolutionary conservation of transcription repression mechanisms. Biochemical Journal, 1999, 337, 13.	1.7	20
66	Genes, cells and organs: recent developments in the molecular genetics of mammalian sex determination. Mammalian Genome, 1998, 9, 683-687.	1.0	5
67	The UTX gene escapes X inactivation in mice and humans. Human Molecular Genetics, 1998, 7, 737-742.	1.4	218
68	The Mouse Y Chromosome Interval Necessary for Spermatogonial Proliferation is Gene Dense with Syntenic Homology to the Human AZFa Region. Human Molecular Genetics, 1998, 7, 1713-1724.	1.4	96
69	1 Sry and Mammalian Sex Determination. Current Topics in Developmental Biology, 1996, 34, 1-23.	1.0	17
70	An H–YDb epitope is encoded by a novel mouse Y chromosome gene. Nature Genetics, 1996, 14, 474-478.	9.4	176
71	The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nature Genetics, 1995, 9, 15-20.	9.4	627
72	Expression of a linear Sry transcript in the mouse genital ridge. Nature Genetics, 1995, 10, 480-482.	9.4	165