Oana Ciofu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/310240/publications.pdf

Version: 2024-02-01

102 papers 13,019 citations

50566 48 h-index 96 g-index

106 all docs

106 docs citations

106 times ranked 14475 citing authors

#	Article	lF	Citations
1	Tolerance and resistance of microbial biofilms. Nature Reviews Microbiology, 2022, 20, 621-635.	13.6	316
2	Polymicrobial infections can select against Pseudomonas aeruginosa mutators because of quorum-sensing trade-offs. Nature Ecology and Evolution, 2022, 6, 979-988.	3.4	10
3	Adjunctive S100A8/A9 Immunomodulation Hinders Ciprofloxacin Resistance in Pseudomonas aeruginosa in a Murine Biofilm Wound Model. Frontiers in Cellular and Infection Microbiology, 2021, 11, 652012.	1.8	4
4	The evolutionary trajectories of P. aeruginosa in biofilm and planktonic growth modes exposed to ciprofloxacin: beyond selection of antibiotic resistance. Npj Biofilms and Microbiomes, 2020, 6, 28.	2.9	29
5	A systematic Cochrane Review of antioxidant supplementation lung disease for cystic fibrosis. Paediatric Respiratory Reviews, 2020, 33, 28-29.	1.2	3
6	Lack of the Major Multifunctional Catalase KatA in Pseudomonas aeruginosa Accelerates Evolution of Antibiotic Resistance in Ciprofloxacin-Treated Biofilms. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	12
7	P124 Effect of ceftazidime-avibactam on biofilm of AmpC hyperproducers Pseudomonas aeruginosa. Journal of Cystic Fibrosis, 2019, 18, S92.	0.3	0
8	Tolerance and Resistance of Pseudomonas aeruginosa Biofilms to Antimicrobial Agents—How P. aeruginosa Can Escape Antibiotics. Frontiers in Microbiology, 2019, 10, 913.	1.5	428
9	Antibiotic therapy as personalized medicine – general considerations and complicating factors. Apmis, 2019, 127, 361-371.	0.9	44
10	P. aeruginosa flow-cell biofilms are enhanced by repeated phage treatments but can be eradicated by phage–ciprofloxacin combination. Pathogens and Disease, 2019, 77, .	0.8	50
11	Improving antibiotic treatment of bacterial biofilm by hyperbaric oxygen therapy: Not just hot air. Biofilm, 2019, 1, 100008.	1.5	28
12	Antioxidant supplementation for lung disease in cystic fibrosis. The Cochrane Library, 2019, 2019, CD007020.	1.5	19
13	Formation of Pseudomonas aeruginosa inhibition zone during tobramycin disk diffusion is due to transition from planktonic to biofilm mode of growth. International Journal of Antimicrobial Agents, 2019, 53, 564-573.	1.1	33
14	Hyperbaric oxygen treatment increases killing of aggregating Pseudomonas aeruginosa isolates from cystic fibrosis patients. Journal of Cystic Fibrosis, 2019, 18, 657-664.	0.3	24
15	lgG avidity to Pseudomonas aeruginosa over the course of chronic lung biofilm infection in cystic fibrosis. Journal of Cystic Fibrosis, 2018, 17, 356-359.	0.3	5
16	Adaptation of Pseudomonas aeruginosa to the chronic phenotype by mutations in the algTmucABD operon in isolates from Brazilian cystic fibrosis patients. PLoS ONE, 2018, 13, e0208013.	1.1	24
17	Evolution of Antibiotic Resistance in Biofilm and Planktonic Pseudomonas aeruginosa Populations Exposed to Subinhibitory Levels of Ciprofloxacin. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	97
18	P044 Azithromycin resistance develops fast in P. aeruginosa but has no negative impact on lung function development in CF patients with chronic infection. Journal of Cystic Fibrosis, 2018, 17, S71.	0.3	0

#	Article	IF	Citations
19	Diagnosis of biofilm infections in cystic fibrosis patients. Apmis, 2017, 125, 339-343.	0.9	69
20	Antibiotic treatment of biofilm infections. Apmis, 2017, 125, 304-319.	0.9	299
21	Real-Time Monitoring of <i>nfxB</i> Mutant Occurrence and Dynamics in Pseudomonas aeruginosa Biofilm Exposed to Subinhibitory Concentrations of Ciprofloxacin. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	29
22	Hyperbaric Oxygen Sensitizes Anoxic Pseudomonas aeruginosa Biofilm to Ciprofloxacin. Antimicrobial Agents and Chemotherapy, $2017,61,\ldots$	1.4	44
23	Detection of multidrug-resistant bacteria in the occupied Palestinian territory: a cross-sectional study. Lancet, The, 2017, 390, S12.	6.3	1
24	Phenotypic shift in Pseudomonas aeruginosa populations from cystic fibrosis lungs after 2-week antipseudomonal treatment. Journal of Cystic Fibrosis, 2017, 16, 222-229.	0.3	36
25	Genome Sequence of Pseudomonas aeruginosa Strain DK1-NH57388A, a Stable Mucoid Cystic Fibrosis Isolate. Genome Announcements, 2016, 4, .	0.8	11
26	Proteome-wide antigen discovery of novel protective vaccine candidates against Staphylococcus aureus infection. Vaccine, 2016, 34, 4602-4609.	1.7	6
27	WS01.5 Effect of hyperbaric oxygen treatment on anoxic P. aeruginosa biofilm killing by ciprofloxacin. Journal of Cystic Fibrosis, 2016, 15, S2.	0.3	0
28	Reinforcement of the bactericidal effect of ciprofloxacin on Pseudomonas aeruginosa biofilm by hyperbaric oxygen treatment. International Journal of Antimicrobial Agents, 2016, 47, 163-167.	1.1	68
29	OligoG CF-5/20 Disruption of Mucoid Pseudomonas aeruginosa Biofilm in a Murine Lung Infection Model. Antimicrobial Agents and Chemotherapy, 2016, 60, 2620-2626.	1.4	52
30	Increased bactericidal activity of colistin on <i>Pseudomonas aeruginosa</i> biofilms in anaerobic conditions. Pathogens and Disease, 2016, 74, ftv086.	0.8	34
31	The phenotypic evolution of Pseudomonas aeruginosa populations changes in the presence of subinhibitory concentrations of ciprofloxacin. Microbiology (United Kingdom), 2016, 162, 865-875.	0.7	30
32	Chronic Infection with Pseudomonas aeruginosa in an Animal Model of Oxidative Stress. , 2015, , 171-178.		0
33	Within-host microevolution of Pseudomonas aeruginosa in Italian cystic fibrosis patients. BMC Microbiology, 2015, 15, 218.	1.3	62
34	The effect of short-term, high-dose oral N-acetylcysteine treatment on oxidative stress markers in cystic fibrosis patients with chronic P. aeruginosa infection $\hat{a} \in \mathbb{C}$ A pilot study. Journal of Cystic Fibrosis, 2015, 14, 211-218.	0.3	31
35	WS02.5 Pharmacodynamics of ceftazidime combined with \hat{I}^2 -lactamase inhibitors in biofilm Pseudomonas aeruginosa in vitro. Journal of Cystic Fibrosis, 2015, 14, S4.	0.3	1
36	Diversity of metabolic profiles of cystic fibrosis Pseudomonas aeruginosa during the early stages of lung infection. Microbiology (United Kingdom), 2015, 161, 1447-1462.	0.7	27

#	Article	IF	Citations
37	Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Advanced Drug Delivery Reviews, 2015, 85, 7-23.	6.6	250
38	Physiological levels of nitrate support anoxic growth by denitrification of Pseudomonas aeruginosa at growth rates reported in cystic fibrosis lungs and sputum. Frontiers in Microbiology, 2014, 5, 554.	1.5	68
39	Detection of NDM-2-producing Acinetobacter baumannii and VIM-producing Pseudomonas aeruginosa in Palestine. Journal of Global Antimicrobial Resistance, 2014, 2, 93-97.	0.9	13
40	Pharmacokinetics and Pharmacodynamics of Antibiotics in Biofilm Infections of Pseudomonas aeruginosa In Vitro and In Vivo. Methods in Molecular Biology, 2014, 1147, 239-254.	0.4	22
41	Formation of hydroxyl radicals contributes to the bactericidal activity of ciprofloxacin against <i>Pseudomonas aeruginosa</i> biofilms. Pathogens and Disease, 2014, 70, 440-443.	0.8	76
42	Bactericidal effect of colistin on planktonic Pseudomonas aeruginosa is independent of hydroxyl radical formation. International Journal of Antimicrobial Agents, 2014, 43, 140-147.	1.1	56
43	Antioxidant supplementation for lung disease in cystic fibrosis. The Cochrane Library, 2014, , CD007020.	1.5	36
44	Applying insights from biofilm biology to drug development â€" can a new approach be developed?. Nature Reviews Drug Discovery, 2013, 12, 791-808.	21.5	421
45	P. aeruginosa in the paranasal sinuses and transplanted lungs have similar adaptive mutations as isolates from chronically infected CF lungs. Journal of Cystic Fibrosis, 2013, 12, 729-736.	0.3	69
46	Sublethal Ciprofloxacin Treatment Leads to Rapid Development of High-Level Ciprofloxacin Resistance during Long-Term Experimental Evolution of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2013, 57, 4215-4221.	1.4	103
47	Respiratory bacterial infections in cystic fibrosis. Current Opinion in Pulmonary Medicine, 2013, 19, 251-258.	1.2	167
48	High \hat{l}^2 -Lactamase Levels Change the Pharmacodynamics of \hat{l}^2 -Lactam Antibiotics in Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 2013, 57, 196-204.	1.4	69
49	Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes. PLoS ONE, 2013, 8, e68484.	1.1	85
50	Effect of Long-Term Voluntary Exercise Wheel Running on Susceptibility to Bacterial Pulmonary Infections in a Mouse Model. PLoS ONE, 2013, 8, e82869.	1.1	7
51	Evolution and diversification of <i>Pseudomonas aeruginosa</i> in the paranasal sinuses of cystic fibrosis children have implications for chronic lung infection. ISME Journal, 2012, 6, 31-45.	4.4	184
52	Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm infections. FEMS Immunology and Medical Microbiology, 2012, 66, 120-120.	2.7	2
53	Initial Pseudomonas aeruginosa infection in patients with cystic fibrosis: characteristics of eradicated and persistent isolates. Clinical Microbiology and Infection, 2012, 18, 567-574.	2.8	37
54	A complex multilevel attack on Pseudomonas aeruginosa algT/U expression and AlgT/U activity results in the loss of alginate production. Gene, 2012, 498, 242-253.	1.0	35

#	Article	IF	CITATIONS
55	Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nature Reviews Microbiology, 2012, 10, 841-851.	13.6	635
56	Molecular Epidemiology of Chronic Pseudomonas aeruginosa Airway Infections in Cystic Fibrosis. PLoS ONE, 2012, 7, e50731.	1.1	61
57	<i>In Vivo</i> Pharmacokinetics/Pharmacodynamics of Colistin and Imipenem in Pseudomonas aeruginosa Biofilm Infection. Antimicrobial Agents and Chemotherapy, 2012, 56, 2683-2690.	1.4	164
58	Poor Antioxidant Status Exacerbates Oxidative Stress and Inflammatory Response to <i>Pseudomonas aeruginosa</i> Lung Infection in Guinea Pigs. Basic and Clinical Pharmacology and Toxicology, 2012, 110, 353-358.	1.2	15
59	Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of <i>Pseudomonas aeruginosa </i> biofilm infections. FEMS Immunology and Medical Microbiology, 2012, 65, 215-225.	2.7	84
60	Development of antibiotic resistance and up-regulation of the antimutator gene pfpl in mutator Pseudomonas aeruginosa due to inactivation of two DNA oxidative repair genes (mutY, mutM). FEMS Microbiology Letters, 2011, 324, 28-37.	0.7	18
61	Mucoid <i>Pseudomonas aeruginosa </i> isolates maintain the biofilm formation capacity and the gene expression profiles during the chronic lung infection of CF patients. Apmis, 2011, 119, 263-274.	0.9	47
62	The clinical impact of bacterial biofilms. International Journal of Oral Science, 2011, 3, 55-65.	3.6	663
63	Pharmacokinetics/Pharmacodynamics of Colistin and Imipenem on Mucoid and Nonmucoid Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 2011, 55, 4469-4474.	1.4	179
64	Evolutionary dynamics of bacteria in a human host environment. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7481-7486.	3.3	327
65	Pseudomonas aeruginosa Biofilms in the Lungs of Cystic Fibrosis Patients. , 2011, , 167-184.		3
66	Cellular responses of A549 alveolar epithelial cells to serially collected (i>Pseudomonas aeruginosa (i>from cystic fibrosis patients at different stages of pulmonary infection. FEMS Immunology and Medical Microbiology, 2010, 59, 207-220.	2.7	44
67	Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants. Microbiology (United Kingdom), 2010, 156, 1108-1119.	0.7	171
68	Polymorphonuclear leucocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax, 2010, 65, 57-62.	2.7	167
69	<i>Pseudomonas aeruginosa</i> biofilms in cystic fibrosis. Future Microbiology, 2010, 5, 1663-1674.	1.0	557
70	Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 2010, 35, 322-332.	1.1	2,809
71	Quorum Sensing and Virulence of Pseudomonas aeruginosa during Lung Infection of Cystic Fibrosis Patients. PLoS ONE, 2010, 5, e10115.	1.1	217
72	Antibiotic Tolerance and Resistance in Biofilms. , 2010, , 215-229.		17

#	Article	IF	Citations
73	Augmented effect of early antibiotic treatment in mice with experimental lung infections due to sequentially adapted mucoid strains of Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 2009, 64, 1241-1250.	1.3	21
74	Antibiotic Resistance in <i>Pseudomonas aeruginosa</i> Strains with Increased Mutation Frequency Due to Inactivation of the DNA Oxidative Repair System. Antimicrobial Agents and Chemotherapy, 2009, 53, 2483-2491.	1.4	90
75	Respiratory syncytial virus infection facilitates acute colonization of <i>Pseudomonas aeruginosa</i> in mice. Journal of Medical Virology, 2009, 81, 2096-2103.	2.5	41
76	Novel experimental <i>Pseudomonas aeruginosa</i> lung infection model mimicking longâ€term host–pathogen interactions in cystic fibrosis. Apmis, 2009, 117, 95-107.	0.9	47
77	Chromosomal mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Clinical Microbiology and Infection, 2009, 15, 60-66.	2.8	74
78	Spread of colistin resistant non-mucoid Pseudomonas aeruginosa among chronically infected Danish cystic fibrosis patients. Journal of Cystic Fibrosis, 2008, 7, 391-397.	0.3	141
79	Maximum Likelihood based comparison of the specific growth rates for P. aeruginosa and four mutator strains. Journal of Microbiological Methods, 2008, 75, 551-557.	0.7	3
80	Investigation of the algT operon sequence in mucoid and non-mucoid Pseudomonas aeruginosa isolates from 115 Scandinavian patients with cystic fibrosis and in 88 in vitro non-mucoid revertants. Microbiology (United Kingdom), 2008, 154, 103-113.	0.7	77
81	Cystic Fibrosis—Coping with Resistance. , 2008, , 149-174.		2
82	Molecular Epidemiology and Dynamics of Pseudomonas aeruginosa Populations in Lungs of Cystic Fibrosis Patients. Infection and Immunity, 2007, 75, 2214-2224.	1.0	220
83	Heterogeneity of Biofilms Formed by Nonmucoid Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis. Journal of Clinical Microbiology, 2005, 43, 5247-5255.	1.8	142
84	Novel Mouse Model of Chronic Pseudomonas aeruginosa Lung Infection Mimicking Cystic Fibrosis. Infection and Immunity, 2005, 73, 2504-2514.	1.0	158
85	Occurrence of Hypermutable Pseudomonas aeruginosa in Cystic Fibrosis Patients Is Associated with the Oxidative Stress Caused by Chronic Lung Inflammation. Antimicrobial Agents and Chemotherapy, 2005, 49, 2276-2282.	1.4	232
86	Immunisation in the current management of cystic fibrosis patients. Journal of Cystic Fibrosis, 2005, 4, 77-87.	0.3	61
87	Dynamics and Spatial Distribution of \hat{l}^2 -Lactamase Expression in Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 2004, 48, 1168-1174.	1.4	165
88	Pseudomonas aeruginosa Biofilms Exposed to Imipenem Exhibit Changes in Global Gene Expression and \hat{l}^2 -Lactamase and Alginate Production. Antimicrobial Agents and Chemotherapy, 2004, 48, 1175-1187.	1.4	302
89	Pseudomonas aeruginosa alginate is refractory to Th1 immune response and impedes host immune clearance in a mouse model of acute lung infection. Journal of Medical Microbiology, 2003, 52, 731-740.	0.7	76
90	Pseudomonas aeruginosa chromosomal beta-lactamase in patients with cystic fibrosis and chronic lung infection. Mechanism of antibiotic resistance and target of the humoral immune response. Acta Pathologica Microbiologica Et Immunologica Scandinavica - Supplementum, 2003, , 1-47.	0.2	6

#	Article	IF	CITATIONS
91	Constitutive High Expression of Chromosomal \hat{l}^2 -Lactamase in Pseudomonas aeruginosa Caused by a New Insertion Sequence (IS 1669) Located in ampD. Antimicrobial Agents and Chemotherapy, 2002, 46, 3406-3411.	1.4	114
92	Antibodies against beta-lactamase can improve ceftazidime treatment of lung infection with beta-lactam-resistant Pseudomonas aeruginosa in a rat model of chronic lung infection. Apmis, 2002, 110, 881-891.	0.9	30
93	Characterization of paired mucoid/non-mucoid Pseudomonas aeruginosa isolates from Danish cystic fibrosis patients: antibiotic resistance, beta-lactamase activity and RiboPrinting. Journal of Antimicrobial Chemotherapy, 2001, 48, 391-396.	1.3	77
94	Typing of Pseudomonas aeruginosa strains in Norwegian cystic fibrosis patients. Clinical Microbiology and Infection, 2001, 7, 238-243.	2.8	40
95	Pseudomonas aeruginosa and the in vitroand in vivo biofilm mode of growth. Microbes and Infection, 2001, 3, 23-35.	1.0	339
96	Rapid development in vitro and in vivo of resistance to ceftazidime in biofilm-growing Pseudomonas aeruginosa due to chromosomal AE-lactamaseNote. Apmis, 2000, 108, 589-600.	0.9	55
97	Molecular Mechanisms of Fluoroquinolone Resistance in Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients. Antimicrobial Agents and Chemotherapy, 2000, 44, 710-712.	1.4	200
98	Mucoid conversion of Pseudomonas aeruginos by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology (United Kingdom), 1999, 145, 1349-1357.	0.7	437
99	Meropenem in cystic fibrosis patients infected with resistant Pseudomonas aeruginosa or Burkholderia cepacia and with hypersensitivity to \hat{l}^2 -lactam antibiotics. Clinical Microbiology and Infection, 1996, 2, 91-98.	2.8	26
100	Use of carbapenems and other antibiotics for pulmonary infections in patients with cystic fibrosis. Pediatric Infectious Disease Journal, 1996, 15, 738-743.	1.1	13
101	Antibodies against Pseudomonas aeruginosa chromosomal \hat{l}^2 -lactamase in patients with cystic fibrosis are markers of the development of resistance of P. aeruginosa to \hat{l}^2 -lactams. Journal of Antimicrobial Chemotherapy, 1995, 35, 295-304.	1.3	10
102	Pseudomonas. , 0, , 773-790.		6