
Serrano A L

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3102399/publications.pdf Version: 2024-02-01

SEDDANO A I

#	Article	IF	CITATIONS
1	Full spectrum cytometry improves the resolution of highly autofluorescent biological samples: Identification of myeloid cells in regenerating skeletal muscles. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 862-876.	1.5	7
2	CHD4 ensures stem cell lineage fidelity during skeletal muscle regeneration. Stem Cell Reports, 2021, 16, 2089-2098.	4.8	10
3	Mouse Models of Muscle Fibrosis. Methods in Molecular Biology, 2021, 2299, 357-370.	0.9	3
4	Muscle repair after physiological damage relies on nuclear migration for cellular reconstruction. Science, 2021, 374, 355-359.	12.6	64
5	Glucose 6â€P dehydrogenase delays the onset of frailty by protecting against muscle damage. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1879-1896.	7.3	9
6	Sestrin prevents atrophy of disused and aging muscles by integrating anabolic and catabolic signals. Nature Communications, 2020, 11, 189.	12.8	87
7	Cilia Control Fat Deposition during Tissue Repair. Developmental Cell, 2017, 42, 114-116.	7.0	1
8	Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment. Cell Metabolism, 2017, 26, 256-266.e4.	16.2	59
9	Fibrosis development in early-onset muscular dystrophies: Mechanisms and translational implications. Seminars in Cell and Developmental Biology, 2017, 64, 181-190.	5.0	74
10	Rejuvenating stem cells to restore muscle regeneration in aging. F1000Research, 2017, 6, 76.	1.6	25
11	Mfn2 deficiency links ageâ€related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. EMBO Journal, 2016, 35, 1677-1693.	7.8	275
12	Autophagy maintains stemness by preventing senescence. Nature, 2016, 534, S3-S4.	27.8	9
13	Autophagy maintains stemness by preventing senescence. Nature, 2016, 529, 37-42.	27.8	1,013
14	Fibrinogen-Derived γ377–395 Peptide Improves Cognitive Performance and Reduces Amyloid-β Deposition, without Altering Inflammation, in AβPP/PS1 Mice. Journal of Alzheimer's Disease, 2015, 47, 403-412.	2.6	6
15	Muscular interleukin-6 differentially regulates skeletal muscle adaptation to high-fat diet in a sex-dependent manner. Cytokine, 2015, 74, 145-151.	3.2	5
16	Macrophages decide between regeneration and fibrosis in muscle. Trends in Endocrinology and Metabolism, 2015, 26, 449-450.	7.1	54
17	Fibrogenic Cell Plasticity Blunts Tissue Regeneration and Aggravates Muscular Dystrophy. Stem Cell Reports, 2015, 4, 1046-1060.	4.8	91
18	Muscle stem cell aging: regulation and rejuvenation. Trends in Endocrinology and Metabolism, 2015, 26, 287-296.	7.1	131

Serrano A L

#	Article	IF	CITATIONS
19	Understanding the Process of Fibrosis in Duchenne Muscular Dystrophy. BioMed Research International, 2014, 2014, 1-11.	1.9	165
20	Geriatric muscle stem cells switch reversible quiescence into senescence. Nature, 2014, 506, 316-321.	27.8	785
21	Novel and optimized strategies for inducing fibrosis in vivo: focus on Duchenne Muscular Dystrophy. Skeletal Muscle, 2014, 4, 7.	4.2	80
22	Autophagy-regulating TP53INP2 mediates muscle wasting and is repressed in diabetes. Journal of Clinical Investigation, 2014, 124, 1914-1927.	8.2	72
23	Fast motor axon loss in SMARD1 does not correspond to morphological and functional alterations of the NMJ. Neurobiology of Disease, 2013, 54, 169-182.	4.4	15
24	Interleukinâ€6 myokine signaling in skeletal muscle: a doubleâ€edged sword?. FEBS Journal, 2013, 280, 4131-4148.	4.7	550
25	Macrophage Plasticity and the Role of Inflammation in Skeletal Muscle Repair. Mediators of Inflammation, 2013, 2013, 1-9.	3.0	247
26	Amelioration of Duchenne muscular dystrophy in mdx mice by elimination of matrix-associated fibrin-driven inflammation coupled to the αMβ2 leukocyte integrin receptor. Human Molecular Genetics, 2012, 21, 1989-2004.	2.9	37
27	PAI-1–regulated miR-21 defines a novel age-associated fibrogenic pathway in muscular dystrophy. Journal of Cell Biology, 2012, 196, 163-175.	5.2	103
28	MKP-1 coordinates ordered macrophage-phenotype transitions essential for stem cell-dependent tissue repair. Cell Cycle, 2012, 11, 877-886.	2.6	25
29	p38/MKP-1–regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair. Journal of Cell Biology, 2011, 195, 307-322.	5.2	206
30	Cellular and Molecular Mechanisms Regulating Fibrosis in Skeletal Muscle Repair and Disease. Current Topics in Developmental Biology, 2011, 96, 167-201.	2.2	147
31	Aberrant repair and fibrosis development in skeletal muscle. Skeletal Muscle, 2011, 1, 21.	4.2	627
32	Regulation and dysregulation of fibrosis in skeletal muscle. Experimental Cell Research, 2010, 316, 3050-3058.	2.6	247
33	Secondary enhancers synergise with primary enhancers to guarantee fine-tuned muscle gene expression. Developmental Biology, 2010, 337, 16-28.	2.0	26
34	Interleukin-6 Is an Essential Regulator of Satellite Cell-Mediated Skeletal Muscle Hypertrophy. Cell Metabolism, 2008, 7, 33-44.	16.2	666
35	Efficient adult skeletal muscle regeneration in mice deficient in p38β, p38γ and p38δ MAP kinases. Cell Cycle, 2008, 7, 2208-2214.	2.6	41
36	Fibrinogen drives dystrophic muscle fibrosis via a TGFβ/alternative macrophage activation pathway. Genes and Development, 2008, 22, 1747-1752.	5.9	222

Serrano A L

#	Article	IF	CITATIONS
37	HIV-1 transgenic expression in mice induces selective atrophy of fast-glycolytic skeletal muscle fibers. Frontiers in Bioscience - Landmark, 2008, 13, 2797.	3.0	12
38	Genetic Deficiency of p38α Reveals its Critical Role in Myoblast Cell Cycle Exit:The p38α-JNK Connection. Cell Cycle, 2007, 6, 1298-1303.	2.6	71
39	uPA deficiency exacerbates muscular dystrophy in MDX mice. Journal of Cell Biology, 2007, 179, 165-165.	5.2	1
40	uPA deficiency exacerbates muscular dystrophy in <i>MDX</i> mice. Journal of Cell Biology, 2007, 178, 1039-1051.	5.2	66
41	Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38α in abrogating myoblast proliferation. EMBO Journal, 2007, 26, 1245-1256.	7.8	217
42	The plasminogen activation system in skeletal muscle regeneration: antagonistic roles of urokinase-type plasminogen activator (upa) and its inhibitor (PAI-1). Frontiers in Bioscience - Landmark, 2005, 10, 2978.	3.0	33
43	Telomeres and Cardiovascular Disease. Circulation Research, 2004, 94, 575-584.	4.5	185
44	NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10590-10595.	7.1	185
45	Differential Regulation of the Muscle-specific GLUT4 Enhancer in Regenerating and Adult Skeletal Muscle. Journal of Biological Chemistry, 2003, 278, 40557-40564.	3.4	42
46	A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9213-9218.	7.1	331
47	Effects of transcutaneous short-term electrical stimulation on M. vastus lateralis characteristics of healthy young men. Pflugers Archiv European Journal of Physiology, 2002, 443, 866-874.	2.8	58
48	Regulatory Elements Governing Transcription in Specialized Myofiber Subtypes. Journal of Biological Chemistry, 2001, 276, 17361-17366.	3.4	43
49	Ras is involved in nerve-activity-dependent regulation of muscle genes. Nature Cell Biology, 2000, 2, 142-147.	10.3	197
50	Myosin heavy chain profile of equine gluteus medius muscle following prolonged draught-exercise training and detraining. , 2000, 21, 235-245.		23
51	Analysis of myosin heavy chains at the protein level in horse skeletal muscle. Journal of Muscle Research and Cell Motility, 1999, 20, 211-221.	2.0	75
52	Myosin isoforms and muscle fiber characteristics in equine gluteus medius muscle. The Anatomical Record, 1996, 244, 444-451.	1.8	5
53	Activities of selected aerobic and anaerobic enzymes in the gluteus medius muscle of endurance horses with different performance records. Veterinary Record, 1995, 137, 187-192.	0.3	21