
AurÃ"le Besse-Patin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3102073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Partial Inhibition of Adipose Tissue Lipolysis Improves Glucose Metabolism and Insulin Sensitivity Without Alteration of Fat Mass. PLoS Biology, 2013, 11, e1001485.	2.6	173
2	Estrogen Signals Through Peroxisome Proliferator-Activated Receptorâ^`γ Coactivator 1α to Reduce Oxidative Damage Associated With Diet-Induced Fatty Liver Disease. Gastroenterology, 2017, 152, 243-256.	0.6	132
3	Loss of <i>Pgc-1α</i> expression in aging mouse muscle potentiates glucose intolerance and systemic inflammation. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E157-E167.	1.8	84
4	PGC1A regulates the IRS1:IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4285-4290.	3.3	77
5	An Intimate Relationship between ROS and Insulin Signalling: Implications for Antioxidant Treatment of Fatty Liver Disease. International Journal of Cell Biology, 2014, 2014, 1-9.	1.0	41
6	PGC-1α isoforms coordinate to balance hepatic metabolism and apoptosis in inflammatory environments. Molecular Metabolism, 2020, 34, 72-84.	3.0	26
7	Renal tubular fluid shear stress promotes endothelial cell activation. Biochemical and Biophysical Research Communications, 2011, 407, 813-817.	1.0	16