
## Marco De Nardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/310130/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Is the COVIDâ€19 pandemic impacting on the risk of African Swine Fever virus (ASFV) introduction into the United States? A shortâ€term assessment of the risk factors. Transboundary and Emerging Diseases, 2022, 69, .                        | 3.0 | 4         |
| 2  | Using network analysis to identify seasonal patterns and key nodes for riskâ€based surveillance of pig<br>diseases in Italy. Transboundary and Emerging Diseases, 2021, 68, 3541-3551.                                                         | 3.0 | 5         |
| 3  | Supporting control programs on African swine fever in Ukraine through a knowledge, attitudes, and practices survey targeting backyard farmers. Veterinary Medicine and Science, 2021, 7, 1786-1799.                                            | 1.6 | 8         |
| 4  | A descriptive spatiotemporal analysis of rabies in domestic carnivores and wildlife in Ukraine in 2012-2018. Medycyna Weterynaryjna, 2021, 77, 6589-2021.                                                                                      | 0.1 | 0         |
| 5  | Integrating digital and field surveillance as complementary efforts to manage epidemic diseases of livestock: African swine fever as a case study. PLoS ONE, 2021, 16, e0252972.                                                               | 2.5 | 4         |
| 6  | The ongoing crises in China illustrate that the assessment of epidemics in isolation is no longer sufficient. Transboundary and Emerging Diseases, 2020, 67, 1043-1044.                                                                        | 3.0 | 7         |
| 7  | Description of surveillance components related to classical swine fever, blue tongue and rabies in<br>selected European countries: An experts' knowledge elicitation. Microbial Risk Analysis, 2019, 13,<br>100081.                            | 2.3 | 1         |
| 8  | Cost-effectiveness of surveillance and biosecurity scenarios for preventing CSF in Switzerland.<br>Microbial Risk Analysis, 2019, 13, 100080.                                                                                                  | 2.3 | 2         |
| 9  | Communicating outputs from risk assessment models: A picture paints a thousand words. Microbial<br>Risk Analysis, 2019, 13, 100084.                                                                                                            | 2.3 | 1         |
| 10 | Genetic and spatial characterization of the red fox (Vulpes vulpes) population in the area stretching<br>between the Eastern and Dinaric Alps and its relationship with rabies and canine distemper dynamics.<br>PLoS ONE, 2019, 14, e0213515. | 2.5 | 16        |
| 11 | Maximising data to optimise animal disease early warning systems and risk assessment tools within<br>Europe. Microbial Risk Analysis, 2019, 13, 100072.                                                                                        | 2.3 | 2         |
| 12 | Social network analysis and risk assessment: An example of introducing an exotic animal disease in<br>Italy. Microbial Risk Analysis, 2019, 13, 100074.                                                                                        | 2.3 | 4         |
| 13 | An Analysis of Rabies Incidence and Its Geographic Spread in the Buffer Area Among Orally Vaccinated<br>Wildlife in Ukraine From 2012 to 2016. Frontiers in Veterinary Science, 2019, 6, 290.                                                  | 2.2 | 19        |
| 14 | Seroprevalence of Rift Valley fever virus in cattle in the Democratic Republic of the Congo. Tropical<br>Animal Health and Production, 2019, 51, 537-543.                                                                                      | 1.4 | 6         |
| 15 | Evaluating a mixed abiotic–biotic model for the distribution and host contact rates of an arthropod<br>vector of pathogens: An example with Ixodes ricinus (Ixodidae). Microbial Risk Analysis, 2019, 13,<br>100067.                           | 2.3 | 2         |
| 16 | Using multi-criteria risk ranking methodology to select case studies for a generic risk assessment<br>framework for exotic disease incursion and spread through Europe. Preventive Veterinary Medicine,<br>2018, 153, 47-55.                   | 1.9 | 13        |
| 17 | Epidemiological Risk Factors for Animal Influenza A Viruses Overcoming Species Barriers. EcoHealth, 2017, 14, 342-360.                                                                                                                         | 2.0 | 17        |
| 18 | Assessment of biosecurity and control measures to prevent incursion and to limit spread of emerging transboundary animal diseases in Europe: An expert survey. Vaccine, 2017, 35, 5956-5966.                                                   | 3.8 | 8         |

Marco De Nardi

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Rabies Vaccination: Higher Failure Rates in Imported Dogs than in those Vaccinated in Italy. Zoonoses and Public Health, 2017, 64, 146-155.                                                                                   | 2.2 | 9         |
| 20 | Implementation of a Regional Training Program on African Swine Fever As Part of the Cooperative<br>Biological Engagement Program across the Caucasus Region. Frontiers in Veterinary Science, 2017, 4,<br>164.                | 2.2 | 4         |
| 21 | Influenza Virus Infection of Marine Mammals. EcoHealth, 2016, 13, 161-170.                                                                                                                                                    | 2.0 | 35        |
| 22 | Genetic Adaptation of Influenza A Viruses in Domestic Animals and Their Potential Role in Interspecies<br>Transmission: A Literature Review. EcoHealth, 2016, 13, 171-198.                                                    | 2.0 | 25        |
| 23 | Influenza surveillance in animals: what is our capacity to detect emerging influenza viruses with zoonotic potential?. Epidemiology and Infection, 2015, 143, 2187-2204.                                                      | 2.1 | 12        |
| 24 | Modelling the species jump: towards assessing the risk of human infection from novel avian influenzas. Royal Society Open Science, 2015, 2, 150173.                                                                           | 2.4 | 10        |
| 25 | Influenza at the animal–human interface: a review of the literature for virological evidence of human influenza viruses other than A(H5N1). Eurosurveillance, 2014, 19, .                                                     | 7.0 | 117       |
| 26 | Rabies and Canine Distemper Virus Epidemics in the Red Fox Population of Northern Italy (2006–2010).<br>PLoS ONE, 2013, 8, e61588.                                                                                            | 2.5 | 47        |
| 27 | First Evidence of Peste des Petits Ruminants (PPR) Virus Circulation in Algeria (Sahrawi Territories):<br>Outbreak Investigation and Virus Lineage Identification. Transboundary and Emerging Diseases, 2012,<br>59, 214-222. | 3.0 | 44        |