Changzhao Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3100767/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct comparison of ITS-90 and PLTS-2000 from 0.65 K to 1 K at LNE-CNAM. Metrologia, 2021, 58, 025005.	1.2	4
2	Acoustic measurement of the triple point of neon T _{Ne} and thermodynamic calibration of a transfer standard for accurate cryogenic thermometry. Metrologia, 2021, 58, 045006.	1.2	6
3	Helmholtz Free Energy Equation of State for 3He–4He Mixtures at Temperatures Above 2.17 K. Journal of Physical and Chemical Reference Data, 2021, 50, 043102.	4.2	0
4	Measurement of thermodynamic temperature between 5 K and 24.5 K with single-pressure refractive-index gas thermometry. Metrologia, 2020, 57, 065006.	1.2	18
5	Realization of ppm level pressure stability for primary thermometry using a primary piston gauge. Measurement: Journal of the International Measurement Confederation, 2020, 160, 107807.	5.0	2
6	Active suppression of temperature oscillation from a pulse-tube cryocooler in a cryogen-free cryostat: Part 2. Experimental realization. Cryogenics, 2020, 109, 103096.	1.7	2
7	Active suppression of temperature oscillation from a pulse-tube cryocooler in a cryogen-free cryostat: Part 1. Simulation modeling from thermal response characteristics. Cryogenics, 2020, 109, 103097.	1.7	4
8	Numerical and Experimental Study of the Hydrostatic Pressure Correction in Gas Thermometry: A Case in the SPRIGT. International Journal of Thermophysics, 2020, 41, 1.	2.1	4
9	Resonance frequency measurement with accuracy and stability at the 10 ^{â^'12} level in a copper microwave cavity below 26 K by experimental optimization. Measurement Science and Technology, 2020, 31, 075011.	2.6	1
10	First stirling-type cryocooler reaching lambda point of 4He (2.17â€⁻K) and its prospect in Chinese HUBS satellite project. Science Bulletin, 2019, 64, 219-221.	9.0	14
11	Numerical and experimental study of VM type pulse tube cryocooler with multi-bypass operating below 4†K. Cryogenics, 2019, 98, 71-79.	1.7	13
12	A high-stability quasi-spherical resonator in SPRICT for microwave frequency measurements at low temperatures. Science Bulletin, 2019, 64, 286-288.	9.0	5
13	Numerical study of a novel single-stage Vuilleumier type pulse tube cryocooler. IOP Conference Series: Materials Science and Engineering, 2019, 502, 012042.	0.6	0
14	A novel method to hit the limit temperature of Stirling-type cryocooler. Journal of Applied Physics, 2018, 123, 063901.	2.5	6
15	Numerical and experimental study on the characteristics of 4ÂK gas-coupled Stirling-type pulse tube cryocooler. International Journal of Refrigeration, 2018, 88, 204-210.	3.4	28
16	CFD study of heat transfer and pressure drop for oscillating flow in helical rectangular channel heat exchanger. International Journal of Thermal Sciences, 2018, 129, 106-114.	4.9	20
17	Ultra-stable pressure is realized for Chinese single pressure refractive index gas thermometry in the range 30–90â€~kPa. Science Bulletin, 2018, 63, 1601-1603.	9.0	5
18	Realization of an ultra-high precision temperature control in a cryogen-free cryostat. Review of Scientific Instruments, 2018, 89, 104901.	1.3	22

Changzhao Pan

#	Article	IF	CITATIONS
19	Thermal analysis of Stirling thermocompressor and its prospect to drive refrigerator by using natural working fluid. Energy Conversion and Management, 2018, 177, 280-291.	9.2	12
20	Chinese SPRIGT realizes high temperature stability in the range of 5–25â€ [–] K. Science Bulletin, 2018, 63, 733-734.	9.0	12
21	Study on a high frequency pulse tube cryocooler capable of achieving temperatures below 4†K by helium-4. Cryogenics, 2018, 94, 103-109.	1.7	36
22	Numerical investigation on the thermoacoustics characteristics of thermal compressor for the pulse tube cryocooler. Applied Thermal Engineering, 2017, 123, 234-242.	6.0	9
23	Progress on a novel VM-type pulse tube cryocooler for 4â€⁻K. Cryogenics, 2017, 88, 66-69.	1.7	11
24	Numerical study of a VM type multi-bypass pulse tube cryocooler operating at 4K. IOP Conference Series: Materials Science and Engineering, 2017, 278, 012048.	0.6	0
25	Two-stage high frequency pulse tube refrigerator with base temperature below 10 K. IOP Conference Series: Materials Science and Engineering, 2017, 278, 012147.	0.6	1
26	Experimental progress of a 4K VM/PT hybrid cryocooler for pre-cooling 1K sorption cooler. IOP Conference Series: Materials Science and Engineering, 2017, 278, 012044.	0.6	0
27	A novel coupled VM-PT cryocooler operating at liquid helium temperature. Cryogenics, 2016, 77, 20-24.	1.7	20
28	Numerical investigation and experimental development on VM-PT cryocooler operating below 4 K. Cryogenics, 2016, 80, 138-146.	1.7	15
29	Numerical study of a one-stage VM cryocooler operating below 10K. Applied Thermal Engineering, 2016, 101, 422-431.	6.0	7
30	CFD Simulation and Optimize of a 10K VM Refrigerator. Physics Procedia, 2015, 67, 479-484.	1.2	2
31	Experimental Investigation on Regenerator Materials of Stirling-type Pulse-tube Refrigerator Working at 20K. Physics Procedia, 2015, 67, 530-535.	1.2	8
32	Experimental study of one-stage VM cryocooler operating below 8K. Cryogenics, 2015, 72, 122-126.	1.7	17
33	CFD study of heat transfer for oscillating flow in helically coiled tube heat-exchanger. Computers and Chemical Engineering, 2014, 69, 59-65.	3.8	30
34	A new method to calculate the pressure drop loss of the regenerator in VM refrigerator. Cryogenics, 2014, 61, 107-110.	1.7	7
35	Investigation of High-Stability Temperature Control in Primary Gas Thermometry. Journal of Thermal Science, 0, , 1.	1.9	0