Henri Nouws

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3100584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tracking Arachis hypogaea Allergen in Pre-Packaged Foodstuff: A Nanodiamond-Based Electrochemical Biosensing Approach. Biosensors, 2022, 12, 429.	2.3	7

2 Natural Magnetite Minerals Enhance 1,2-Dichloroethane Reductive Dechlorination. Minerals (Basel,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

3	Food allergen control: Tropomyosin analysis through electrochemical immunosensing. Food Chemistry, 2022, 396, 133659.	4.2	10
4	Molecularly imprinted polymer-based electrochemical sensors for environmental analysis. Biosensors and Bioelectronics, 2021, 172, 112719.	5.3	149
5	A Three-Dimensional Electrochemical Process for the Removal of Carbamazepine. Applied Sciences (Switzerland), 2021, 11, 6432.	1.3	5
6	Electrochemical Immunosensor for the Simultaneous Determination of Two Main Peanut Allergenic Proteins (Ara h 1 and Ara h 6) in Food Matrices. Foods, 2021, 10, 1718.	1.9	13
7	Voltammetric Immunosensor to Track a Major Peanut Allergen (Ara h 1) in Food Products Employing Quantum Dot Labels. Biosensors, 2021, 11, 426.	2.3	11
8	Tropomyosin Analysis in Foods Using an Electrochemical Immunosensing Approach. , 2021, 5, .		1
9	A Voltammetric Nanodiamond-Coated Screen-Printed Immunosensor for The Determination of a Peanut Allergen in Commercial Food Products. , 2021, 5, .		1
10	Neutrophil gelatinase-associated lipocalin detection using a sensitive electrochemical immunosensing approach. Sensors and Actuators B: Chemical, 2020, 304, 127285.	4.0	16
11	Quantum dots as nanolabels for breast cancer biomarker HER2-ECD analysis in human serum. Talanta, 2020, 208, 120430.	2.9	62
12	High-performance electrochemical immunomagnetic assay for breast cancer analysis. Sensors and Actuators B: Chemical, 2020, 308, 127667.	4.0	38
13	Screen-Printed Electrode-Based Sensors for Food Spoilage Control: Bacteria and Biogenic Amines Detection. Biosensors, 2020, 10, 139.	2.3	49
14	Immunomagnetic bead-based bioassay for the voltammetric analysis of the breast cancer biomarker HER2-ECD and tumour cells using quantum dots as detection labels. Mikrochimica Acta, 2020, 187, 184.	2.5	35
15	Electrochemical detection and characterization of nanoparticles: A potential tool for environmental purposes. Current Opinion in Electrochemistry, 2020, 22, 58-64.	2.5	8
16	Diamine oxidase-modified screen-printed electrode for the redox-mediated determination of histamine. Journal of Analytical Science and Technology, 2020, 11, .	1.0	26
17	Nano- and Micro Material-Based Electrochemical Bioassays for the Non-Invasive Detection of HER2-ECD, a Breast Cancer Biomarker. Proceedings (mdpi), 2019, 15, 20.	0.2	0

Henri Nouws

#	Article	IF	CITATIONS
19	Disposable electrochemical immunosensor for analysis of cystatin C, a CKD biomarker. Talanta, 2019, 201, 211-216.	2.9	27
20	Amperometric enzyme sensor for the rapid determination of histamine. Analytical Methods, 2019, 11, 1264-1269.	1.3	38
21	Electrochemical Sensing Platforms for HER2â€ECD Breast Cancer Biomarker Detection. Electroanalysis, 2019, 31, 121-128.	1.5	47
22	Impact of magnetite nanoparticles on the syntrophic dechlorination of 1,2-dichloroethane. Science of the Total Environment, 2018, 624, 17-23.	3.9	9
23	Electrochemical Biosensing in Cancer Diagnostics and Followâ€up. Electroanalysis, 2018, 30, 1584-1603.	1.5	46
24	Molecularly imprinted electrochemical sensor for the point-of-care detection of a breast cancer biomarker (CA 15-3). Sensors and Actuators B: Chemical, 2018, 256, 905-912.	4.0	90
25	Voltammetric immunosensor for the simultaneous analysis of the breast cancer biomarkers CA 15-3 and HER2-ECD. Sensors and Actuators B: Chemical, 2018, 255, 918-925.	4.0	70
26	Breast cancer biomarker (HER2-ECD) detection using a molecularly imprinted electrochemical sensor. Sensors and Actuators B: Chemical, 2018, 273, 1008-1014.	4.0	109
27	Bioelectrochemical Dechlorination of 1,2â€DCAÂwith an AQDSâ€Functionalized Cathode Serving as Electron Donor. Fuel Cells, 2017, 17, 612-617.	1.5	9
28	Green zero-valent iron nanoparticles for the degradation of amoxicillin. International Journal of Environmental Science and Technology, 2017, 14, 1109-1118.	1.8	44
29	Improving the extraction of Ara h 6 (a peanut allergen) from a chocolate-based matrix for immunosensing detection: Influence of time, temperature and additives. Food Chemistry, 2017, 218, 242-248.	4.2	18
30	Enrichment of Dehalococcoides mccartyi spp. from a municipal activated sludge during AQDS-mediated bioelectrochemical dechlorination of 1,2-dichloroethane to ethene. Bioresource Technology, 2016, 214, 426-431.	4.8	25
31	Bioelectrochemically-assisted reductive dechlorination of 1,2-dichloroethane by a Dehalococcoides- enriched microbial culture. Bioresource Technology, 2015, 195, 78-82.	4.8	41
32	Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Science of the Total Environment, 2015, 533, 76-81.	3.9	171
33	Molecularly imprinted electrochemical sensor for ochratoxin A detection in food samples. Sensors and Actuators B: Chemical, 2015, 215, 107-112.	4.0	80
34	Detection of the peanut allergen Ara h 6 in foodstuffs using a voltammetric biosensing approach. Analytical and Bioanalytical Chemistry, 2015, 407, 7157-7163.	1.9	45
35	Voltammetric analysis of mancozeb and its degradation product ethylenethiourea. Journal of Electroanalytical Chemistry, 2015, 758, 54-58.	1.9	14
36	Detection of Ara h 1 (a major peanut allergen) in food using an electrochemical gold nanoparticle-coated screen-printed immunosensor. Biosensors and Bioelectronics, 2015, 64, 19-24.	5.3	76

Henri Nouws

#	Article	lF	CITATIONS
37	Iron oxide/gold core/shell nanomagnetic probes and CdS biolabels for amplified electrochemical immunosensing of Salmonella typhimurium. Biosensors and Bioelectronics, 2014, 51, 195-200.	5.3	64
38	Utilization of food industry wastes for the production of zero-valent iron nanoparticles. Science of the Total Environment, 2014, 496, 233-240.	3.9	91
39	Electrochemical immunosensor for the analysis of the breast cancer biomarker HER2 ECD. Talanta, 2014, 129, 594-599.	2.9	86
40	Green production of zero-valent iron nanoparticles using tree leaf extracts. Science of the Total Environment, 2013, 445-446, 1-8.	3.9	237
41	Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen. Science of the Total Environment, 2013, 461-462, 323-329.	3.9	155
42	An electrochemical deamidated gliadin antibody immunosensor for celiac disease clinical diagnosis. Analyst, The, 2013, 138, 1956.	1.7	17
43	Ecotoxicity of nanoscale zero-valent iron particles – a review. Vigilância Sanitária Em Debate: Sociedade, Ciência & Tecnologia, 2013, 1, .	0.3	1
44	Salt content in bread and dough from northern Portugal: Method development and comparison. Journal of Food Composition and Analysis, 2012, 27, 14-20.	1.9	16
45	Celiac disease detection using a transglutaminase electrochemical immunosensor fabricated on nanohybrid screen-printed carbon electrodes. Biosensors and Bioelectronics, 2012, 31, 95-100.	5.3	59
46	Chromatographic Techniques for the Determination of Free Phenol in Foundry Resins. Analytical Letters, 2011, 44, 1536-1543.	1.0	1
47	Celiac disease diagnosis and gluten-free food analytical control. Analytical and Bioanalytical Chemistry, 2010, 397, 1743-1753.	1.9	26
48	Direct Electroanalytical Determination of Fluvastatin in a Pharmaceutical Dosage Form: Batch and Flow Analysis. Analytical Letters, 2008, 41, 2794-2804.	1.0	8
49	Static and Hydrodynamic Monitoring of Citalopram Based on its Electro-oxidation Behavior at a Glassy-Carbon Surface. Analytical Letters, 2008, 41, 2171-2185.	1.0	14
50	Squareâ€Wave Adsorptive‧tripping Voltammetric Detection in the Quality Control of Fluoxetine. Analytical Letters, 2007, 40, 1131-1146.	1.0	25
51	Electrochemical Determination of Citalopram by Adsorptive Stripping Voltammetry–Determination in Pharmaceutical Products. Analytical Letters, 2006, 39, 1907-1915.	1.0	29
52	Electroanalytical determination of paroxetine in pharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis, 2006, 42, 341-346.	1.4	35
53	Electroanalytical study of the antidepressant sertraline. Journal of Pharmaceutical and Biomedical Analysis, 2005, 39, 290-293.	1.4	33
54	Electroanalytical study of fluvoxamine. Analytical and Bioanalytical Chemistry, 2005, 382, 1662-1668.	1.9	21

#	Article	IF	CITATIONS
55	Electroanalytical Study of the Pesticide Asulam. International Journal of Environmental Analytical Chemistry, 2002, 82, 69-76.	1.8	12
56	An automatic determination of caffeine in soft drinks using flow injection system with amperometric detection. Food Additives and Contaminants, 1998, 15, 265-269.	2.0	10