Hannah L Cloke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3100576/publications.pdf

Version: 2024-02-01

85 papers 5,350 citations

35 h-index 91828 69 g-index

146 all docs 146
docs citations

146 times ranked

5517 citing authors

#	Article	IF	CITATIONS
1	Ensemble flood forecasting: A review. Journal of Hydrology, 2009, 375, 613-626.	2.3	851
2	ERA-Interim/Land: a global land surface reanalysis data set. Hydrology and Earth System Sciences, 2015, 19, 389-407.	1.9	483
3	Continental and global scale flood forecasting systems. Wiley Interdisciplinary Reviews: Water, 2016, 3, 391-418.	2.8	185
4	Deriving global flood hazard maps of fluvial floods through a physical model cascade. Hydrology and Earth System Sciences, 2012, 16, 4143-4156.	1.9	175
5	Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology, 2018, 62, 1155-1165.	1.3	170
6	The monetary benefit of early flood warnings in Europe. Environmental Science and Policy, 2015, 51, 278-291.	2.4	160
7	Ensemble predictions and perceptions of risk, uncertainty, and error in flood forecasting. Environmental Hazards, 2007, 7, 115-127.	1.4	155
8	Comment on "Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water―by Eric F. Wood et al Water Resources Research, 2012, 48, .	1.7	132
9	How do I know if my forecasts are better? Using benchmarks in hydrological ensemble prediction. Journal of Hydrology, 2015, 522, 697-713.	2.3	129
10	Challenges of Operational River Forecasting. Journal of Hydrometeorology, 2014, 15, 1692-1707.	0.7	127
11	GloFAS-ERA5 operational global river discharge reanalysis 1979–present. Earth System Science Data, 2020, 12, 2043-2060.	3.7	124
12	The 2010–2011 drought in the Horn of Africa in ECMWF reanalysis and seasonal forecast products. International Journal of Climatology, 2013, 33, 1720-1729.	1.5	119
13	New dimensions in early flood warning across the globe using grandâ€ensemble weather predictions. Geophysical Research Letters, 2008, 35, .	1.5	115
14	ERA5â€HEAT: A global gridded historical dataset of human thermal comfort indices from climate reanalysis. Geoscience Data Journal, 2021, 8, 2-10.	1.8	101
15	The European Flood Alert System and the communication, perception, and use of ensemble predictions for operational flood risk management. Hydrological Processes, 2013, 27, 147-157.	1.1	100
16	Challenges in communicating and using ensembles in operational flood forecasting. Meteorological Applications, 2010, 17, 209-222.	0.9	98
17	Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review. Remote Sensing, 2018, 10, 2038.	1.8	95
18	Modelling climate impact on floods with ensemble climate projections. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 282-297.	1.0	92

#	Article	IF	CITATIONS
19	Satellite-supported flood forecasting in river networks: A real case study. Journal of Hydrology, 2015, 523, 706-724.	2.3	88
20	Skilful seasonal forecasts of streamflow over Europe?. Hydrology and Earth System Sciences, 2018, 22, 2057-2072.	1.9	88
21	Technical Note: The normal quantile transformation and its application in a flood forecasting system. Hydrology and Earth System Sciences, 2012, 16, 1085-1094.	1.9	80
22	Assessing the performance of global hydrological models for capturing peak river flows in the Amazon basin. Hydrology and Earth System Sciences, 2019, 23, 3057-3080.	1.9	79
23	Hyperresolution information and hyperresolution ignorance in modelling the hydrology of the land surface. Science China Earth Sciences, 2015, 58, 25-35.	2.3	74
24	Developing a global operational seasonal hydro-meteorological forecasting system: GloFAS-Seasonal v1.0. Geoscientific Model Development, 2018, 11, 3327-3346.	1.3	69
25	Verification of Heat Stress Thresholds for a Health-Based Heat-Wave Definition. Journal of Applied Meteorology and Climatology, 2019, 58, 1177-1194.	0.6	66
26	Evaluating forecasts of extreme events for hydrological applications: an approach for screening unfamiliar performance measures. Meteorological Applications, 2008, 15, 181-197.	0.9	65
27	Evaluation of the ERA5 reanalysis-based Universal Thermal Climate Index on mortality data in Europe. Environmental Research, 2021, 198, 111227.	3.7	63
28	HESS Opinions & Discrete and Earth System Sciences, 2013, 17, 4389-4399.	1.9	53
29	The impact of uncertain precipitation data on insurance loss estimates using a flood catastrophe model. Hydrology and Earth System Sciences, 2014, 18, 2305-2324.	1.9	48
30	Improving the TanDEM-X Digital Elevation Model for flood modelling using flood extents from Synthetic Aperture Radar images. Remote Sensing of Environment, 2016, 173, 15-28.	4.6	48
31	Don't blame the rain: Social power and the 2015–2017 drought in Cape Town. Journal of Hydrology, 2021, 594, 125953.	2.3	47
32	Mapping combined wildfire and heat stress hazards to improve evidence-based decision making. Environment International, 2019, 127, 21-34.	4.8	45
33	Improving flood forecasts for better flood preparedness in the <scp>UK</scp> (and beyond). Geographical Journal, 2014, 180, 310-316.	1.6	40
34	Emergency flood bulletins for Cyclones Idai and Kenneth: A critical evaluation of the use of global flood forecasts for international humanitarian preparedness and response. International Journal of Disaster Risk Reduction, 2020, 50, 101811.	1.8	39
35	Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making game. Hydrology and Earth System Sciences, 2016, 20, 3109-3128.	1.9	38
36	Developing observational methods to drive future hydrological science: Can we make a start as a community?. Hydrological Processes, 2020, 34, 868-873.	1.1	34

#	Article	IF	CITATIONS
37	Hydrological ensemble prediction systems. Hydrological Processes, 2013, 27, 1-4.	1.1	33
38	Climate impacts on river flow: projections for the Medway catchment, UK, with UKCP09 and CATCHMOD. Hydrological Processes, 2010, 24, 3476-3489.	1.1	32
39	Floodwater detection in urban areas using Sentinel-1 and WorldDEM data. Journal of Applied Remote Sensing, 2021, 15, .	0.6	32
40	Improved seasonal prediction of the hot summer of 2003 over Europe through better representation of uncertainty in the land surface. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 79-90.	1.0	28
41	A global evaluation of multiâ€model ensemble tropical cyclone track probability forecasts. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 531-545.	1.0	27
42	Robust algorithm for detecting floodwater in urban areas using synthetic aperture radar images. Journal of Applied Remote Sensing, 2018, 12 , 1 .	0.6	25
43	Recent climatic trends and linkages to river discharge in Central Vietnam. Hydrological Processes, 2014, 28, 1587-1601.	1.1	24
44	Quality control, validation and user feedback of the European Flood Alert System (EFAS). International Journal of Digital Earth, 2011, 4, 77-90.	1.6	23
45	Largeâ€scale hydrology: advances in understanding processes, dynamics and models from beyond river basin to global scale. Hydrological Processes, 2011, 25, 991-995.	1.1	23
46	An Efficient Approach for Estimating Streamflow Forecast Skill Elasticity. Journal of Hydrometeorology, 2017, 18, 1715-1729.	0.7	22
47	How Well Do Operational Numerical Weather Prediction Configurations Represent Hydrology?. Journal of Hydrometeorology, 2019, 20, 1533-1552.	0.7	22
48	Knowledge gaps in our perceptual model of Great Britain's hydrology. Hydrological Processes, 2021, 35, e14288.	1.1	22
49	Using ensemble reforecasts to generate flood thresholds for improved global flood forecasting. Journal of Flood Risk Management, 2020, 13, e12658.	1.6	21
50	How do I know if l've improved my continental scale flood early warning system?. Environmental Research Letters, 2017, 12, 044006.	2.2	20
51	Drought and society: Scientific progress, blind spots, and future prospects. Wiley Interdisciplinary Reviews: Climate Change, 2022, 13, .	3.6	20
52	Heatwaves: An invisible risk in UK policy and research. Environmental Science and Policy, 2021, 116, 1-7.	2.4	19
53	Attribution of Amazon floods to modes of climate variability: A review. Meteorological Applications, 2020, 27, e1949.	0.9	18
54	A Vision for Hydrological Prediction. Atmosphere, 2020, 11, 237.	1.0	17

#	Article	IF	Citations
55	Can seasonal hydrological forecasts inform local decisions and actions? A decision-making activity. Geoscience Communication, $2018, 1, 35-57$.	0.5	16
56	Estimation of uncertainty in flood forecasts—A comparison of methods. Journal of Flood Risk Management, 2019, 12, .	1.6	16
57	Improving Urban Flood Mapping by Merging Synthetic Aperture Radar-Derived Flood Footprints with Flood Hazard Maps. Water (Switzerland), 2021, 13, 1577.	1.2	16
58	The fate of the Caspian Sea under projected climate change and water extraction during the 21st century. Environmental Research Letters, 2021, 16, 094024.	2.2	16
59	The potential of flood forecasting using a variable-resolution global Digital Terrain Model and flood extents from Synthetic Aperture Radar images. Frontiers in Earth Science, 2015, 3, .	0.8	15
60	"Are we talking just a bit of water out of bank? Or is it Armageddon?―Front line perspectives on transitioning to probabilistic fluvial flood forecasts in England. Geoscience Communication, 2020, 3, 203-232.	0.5	15
61	Mixing of Hillslope, River, and Alluvial Ground Waters in Lowland Floodplains. Ground Water, 2003, 41, 926-936.	0.7	14
62	Influence of ENSO and tropical Atlantic climate variability on flood characteristics in the Amazon basin. Hydrology and Earth System Sciences, 2021, 25, 3875-3895.	1.9	13
63	Integrating Multiple Research Methods to Unravel the Complexity of Humanâ€Water Systems. AGU Advances, 2021, 2, e2021AV000473.	2.3	13
64	Improving the evaluation of hydrological multi-model forecast performance in the Upper Danube Catchment. International Journal of River Basin Management, 2012, 10, 1-12.	1.5	12
65	Reducing Inconsistencies in Point Observations of Maximum Flood Inundation Level. Earth Interactions, 2013, 17, 1-27.	0.7	12
66	Imbalanced land surface water budgets in a numerical weather prediction system. Geophysical Research Letters, 2015, 42, 4411-4417.	1.5	12
67	Thermofeel: A python thermal comfort indices library. SoftwareX, 2022, 18, 101005.	1.2	12
68	What is the most useful approach for forecasting hydrological extremes during El Niño?. Environmental Research Communications, 2019, 1, 031002.	0.9	11
69	The 2013/14 Thames Basin Floods: Do Improved Meteorological Forecasts Lead to More Skillful Hydrological Forecasts at Seasonal Time Scales?. Journal of Hydrometeorology, 2018, 19, 1059-1075.	0.7	10
70	Impacts of Variations in Caspian Sea Surface Area on Catchmentâ€5cale and Largeâ€5cale Climate. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034251.	1.2	10
71	What are the drivers of Caspian Sea level variation during the late Quaternary?. Quaternary Science Reviews, 2022, 283, 107457.	1.4	10
72	Borderless Heat Hazards With Bordered Impacts. Earth's Future, 2021, 9, e2021EF002064.	2.4	9

#	Article	IF	CITATIONS
73	Beyond El Niño: Unsung climate modes drive African floods. Weather and Climate Extremes, 2021, 33, 100345.	1.6	8
74	Going home for tea and medals: How members of the flood risk management authorities in England construct flooding and flood risk management. Journal of Flood Risk Management, 2022, 15, e12768.	1.6	8
75	Evaluating the impact of post-processing medium-range ensemble streamflow forecasts from the European Flood Awareness System. Hydrology and Earth System Sciences, 2022, 26, 2939-2968.	1.9	8
76	Evaluating uncertainty in estimates of soil moisture memory with a reverse ensemble approach. Hydrology and Earth System Sciences, 2016, 20, 2737-2743.	1.9	6
77	Cartograms for Use in Forecasting Weather-Driven Natural Hazards. Cartographic Journal, 2019, 56, 134-145.	0.8	6
78	Evaluation of the Consistency of ECMWF Ensemble Forecasts. Geophysical Research Letters, 2020, 47, e2020GL087934.	1.5	6
79	Hydrological Impact of the New ECMWF Multi-Layer Snow Scheme. Atmosphere, 2022, 13, 727.	1.0	4
80	Simulation num \tilde{A} ©rique d' \tilde{A} ©coulements en milieu poreux avec l' \tilde{A} ©quation de Richards. Revue Europeenne Des Elements, 2003, 12, 203-220.	0.1	3
81	Hydrological Ensemble Prediction Systems Around the Globe. , 2019, , 1187-1221.		2
82	Monsoons: prediction, variability and impact. Meteorological Applications, 2012, 19, 129-129.	0.9	1
83	Evaluation of river flow in Europe over the last four decades using ERA40. , 2004, 5568, 92.		0
84	Evaluation of a four-decade pan-European database of surface precipitation for river flow modeling. , 2004, 5574, 61.		0
85	Large-scale hydrology: observations and modelling. Hydrology Research, 2013, 44, 747-747.	1.1	0