List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3100254/publications.pdf Version: 2024-02-01

IMAN OSMAN

#	Article	IF	CITATIONS
1	Early Diagnosis of Cutaneous Melanoma. JAMA - Journal of the American Medical Association, 2004, 292, 2771.	7.4	506
2	The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nature Genetics, 2015, 47, 250-256.	21.4	434
3	Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20429-20434.	7.1	327
4	miR-30b/30d Regulation of GalNAc Transferases Enhances Invasion and Immunosuppression during Metastasis. Cancer Cell, 2011, 20, 104-118.	16.8	314
5	Age Correlates with Response to Anti-PD1, Reflecting Age-Related Differences in Intratumoral Effector and Regulatory T-Cell Populations. Clinical Cancer Research, 2018, 24, 5347-5356.	7.0	253
6	Intra- and Inter-Tumor Heterogeneity of BRAFV600EMutations in Primary and Metastatic Melanoma. PLoS ONE, 2012, 7, e29336.	2.5	250
7	Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nature Communications, 2017, 8, 1319.	12.8	237
8	A Systems Biology Approach Identifies FUT8 as a Driver of Melanoma Metastasis. Cancer Cell, 2017, 31, 804-819.e7.	16.8	233
9	Melanoma MicroRNA Signature Predicts Post-Recurrence Survival. Clinical Cancer Research, 2010, 16, 1577-1586.	7.0	204
10	Epigenetic Silencing of CDR1as Drives IGF2BP3-Mediated Melanoma Invasion and Metastasis. Cancer Cell, 2020, 37, 55-70.e15.	16.8	200
11	BRD4 Sustains Melanoma Proliferation and Represents a New Target for Epigenetic Therapy. Cancer Research, 2013, 73, 6264-6276.	0.9	196
12	Association of Initial Viral Load in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Patients with Outcome and Symptoms. American Journal of Pathology, 2020, 190, 1881-1887.	3.8	155
13	Relating the gut metagenome and metatranscriptome to immunotherapy responses in melanoma patients. Genome Medicine, 2019, 11, 61.	8.2	134
14	HERâ€⊋ profiling and targeting in prostate carcinoma. Cancer, 2002, 94, 980-986.	4.1	128
15	Serum microRNAs as biomarkers for recurrence in melanoma. Journal of Translational Medicine, 2012, 10, 155.	4.4	116
16	Novel Blood Biomarkers of Human Urinary Bladder Cancer. Clinical Cancer Research, 2006, 12, 3374-3380.	7.0	111
17	Chronic Immune-Related Adverse Events Following Adjuvant Anti–PD-1 Therapy for High-risk Resected Melanoma. JAMA Oncology, 2021, 7, 744.	7.1	110
18	Metaâ€analysis of sentinel lymph node positivity in thin melanoma (â‰⊈ mm). Cancer, 2009, 115, 869-879.	4.1	105

#	Article	IF	CITATIONS
19	Baseline antibody profiles predict toxicity in melanoma patients treated with immune checkpoint inhibitors. Journal of Translational Medicine, 2018, 16, 82.	4.4	98
20	Role of radiologic imaging at the time of initial diagnosis of stage T1bâ€T3b melanoma. Cancer, 2007, 110, 1107-1114.	4.1	93
21	Using Machine Learning Algorithms to Predict Immunotherapy Response in Patients with Advanced Melanoma. Clinical Cancer Research, 2021, 27, 131-140.	7.0	93
22	Serumâ€based miRNAs in the prediction and detection of recurrence in melanoma patients. Cancer, 2015, 121, 51-59.	4.1	92
23	FBXW7 Mutations in Melanoma and a New Therapeutic Paradigm. Journal of the National Cancer Institute, 2014, 106, dju107.	6.3	87
24	Racial Disparity of Epidermal Growth Factor Receptor Expression in Prostate Cancer. Journal of Clinical Oncology, 2004, 22, 4725-4729.	1.6	84
25	Clinical variables and primary tumor characteristics predictive of the development of melanoma brain metastases survival. Cancer, 2011, 117, 1711-1720.	4.1	83
26	Phosphorylation of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma. Science Signaling, 2015, 8, ra27.	3.6	83
27	PTEN Expression in Melanoma: Relationship with Patient Survival, Bcl-2 Expression, and Proliferation. Clinical Cancer Research, 2005, 11, 5153-5157.	7.0	81
28	Changes in the presentation of nodular and superficial spreading melanomas over 35 years. Cancer, 2008, 113, 3341-3348.	4.1	78
29	Deep Learning Based on Standard H&E Images of Primary Melanoma Tumors Identifies Patients at Risk for Visceral Recurrence and Death. Clinical Cancer Research, 2020, 26, 1126-1134.	7.0	78
30	Reversal of natural killer cell exhaustion by TIM-3 blockade. OncoImmunology, 2014, 3, e946365.	4.6	76
31	The complex relationship between body mass index and response to immune checkpoint inhibition in metastatic melanoma patients. , 2019, 7, 222.		76
32	Revisiting determinants of prognosis in cutaneous melanoma. Cancer, 2015, 121, 4108-4123.	4.1	75
33	Primary Melanoma Histologic Subtype: Impact on Survival and Response to Therapy. Journal of the National Cancer Institute, 2019, 111, 180-188.	6.3	74
34	Superficial spreading and nodular melanoma are distinct biological entities. Melanoma Research, 2012, 22, 1-8.	1.2	73
35	A miRNA-Based Signature Detected in Primary Melanoma Tissue Predicts Development of Brain Metastasis. Clinical Cancer Research, 2015, 21, 4903-4912.	7.0	73
36	Immunologic heterogeneity of tumor-infiltrating lymphocyte composition in primary melanoma. Human Pathology, 2016, 57, 116-125.	2.0	71

#	Article	IF	CITATIONS
37	De Novo vs Nevus-Associated Melanomas: Differences in Associations With Prognostic Indicators and Survival. Journal of the National Cancer Institute, 2016, 108, djw121.	6.3	67
38	Sequencing identifies multiple early introductions of SARS-CoV-2 to the New York City region. Genome Research, 2020, 30, 1781-1788.	5.5	66
39	The ongoing racial disparities in melanoma: An analysis of the Surveillance, Epidemiology, and End Results database (1975-2016). Journal of the American Academy of Dermatology, 2021, 84, 1585-1593.	1.2	64
40	Sensitivity of plasma BRAF ^{mutant} and NRAS ^{mutant} cellâ€free DNA assays to detect metastatic melanoma in patients with low RECIST scores and nonâ€RECIST disease progression. Molecular Oncology, 2016, 10, 157-165.	4.6	63
41	Immune response in melanoma: an in-depth analysis of the primary tumor and corresponding sentinel lymph node. Modern Pathology, 2012, 25, 1000-1010.	5.5	61
42	The Novel Gamma Secretase Inhibitor RO4929097 Reduces the Tumor Initiating Potential of Melanoma. PLoS ONE, 2011, 6, e25264.	2.5	60
43	Integrative Genomics Identifies Molecular Alterations that Challenge the Linear Model of Melanoma Progression. Cancer Research, 2011, 71, 2561-2571.	0.9	57
44	Neutral Endopeptidase Protein Expression and Prognosis in Localized Prostate Cancer. Clinical Cancer Research, 2004, 10, 4096-4100.	7.0	55
45	A novel mouse model demonstrates that oncogenic melanocyte stem cells engender melanoma resembling human disease. Nature Communications, 2019, 10, 5023.	12.8	51
46	Identification of Metastasis-Suppressive microRNAs in Primary Melanoma. Journal of the National Cancer Institute, 2015, 107, .	6.3	47
47	Histology-Specific MicroRNA Alterations in Melanoma. Journal of Investigative Dermatology, 2012, 132, 1860-1868.	0.7	46
48	Development of Novel Mutation-Specific Droplet Digital PCR Assays Detecting TERT Promoter Mutations in Tumor and Plasma Samples. Journal of Molecular Diagnostics, 2019, 21, 274-285.	2.8	46
49	Baseline prognostic nutritional index and changes in pretreatment body mass index associate with immunotherapy response in patients with advanced cancer. , 2020, 8, e001674.		46
50	BET and BRAF inhibitors act synergistically against BRAF―mutant melanoma. Cancer Medicine, 2016, 5, 1183-1193.	2.8	41
51	SERUM LEVELS OF SHED HER2/NEU PROTEIN IN MEN WITH PROSTATE CANCER CORRELATE WITH DISEASE PROGRESSION. Journal of Urology, 2005, 174, 2174-2177.	0.4	40
52	Hedgehog Pathway Blockade Inhibits Melanoma Cell Growth in Vitro and in Vivo. Pharmaceuticals, 2013, 6, 1429-1450.	3.8	40
53	Autoimmune genetic risk variants as germline biomarkers of response to melanoma immune-checkpoint inhibition. Cancer Immunology, Immunotherapy, 2019, 68, 897-905.	4.2	38
54	Analysis of Recurrence Patterns in Acral Versus Nonacral Melanoma: Should Histologic Subtype Influence Treatment Guidelines?. Journal of the National Comprehensive Cancer Network: JNCCN, 2014, 12, 1706-1712.	4.9	36

#	Article	IF	CITATIONS
55	Identification of a Novel Pathogenic Germline KDR Variant in Melanoma. Clinical Cancer Research, 2016, 22, 2377-2385.	7.0	34
56	Loss of neutral endopeptidase and activation of protein kinase B (Akt) is associated with prostate cancer progression. Cancer, 2006, 107, 2628-2636.	4.1	33
57	Impact of Socioeconomic Status and Sociodemographic Factors on Melanoma Presentation Among Ethnic Minorities. Journal of Community Health, 2011, 36, 461-468.	3.8	33
58	Developing a multidisciplinary prospective melanoma biospecimen repository to advance translational research. American Journal of Translational Research (discontinued), 2009, 1, 35-43.	0.0	33
59	Melanoma Prognosis: Accuracy of the American Joint Committee on Cancer Staging Manual Eighth Edition. Journal of the National Cancer Institute, 2020, 112, 921-928.	6.3	32
60	Melanoma-Secreted Amyloid Beta Suppresses Neuroinflammation and Promotes Brain Metastasis. Cancer Discovery, 2022, 12, 1314-1335.	9.4	31
61	Melanoma risk loci as determinants of melanoma recurrence and survival. Journal of Translational Medicine, 2013, 11, 279.	4.4	30
62	Synchronized Targeting of Notch and ERBBÂSignaling Suppresses Melanoma Tumor Growth through Inhibition of Notch1 and ERBB3. Journal of Investigative Dermatology, 2016, 136, 464-472.	0.7	30
63	Genetic markers of pigmentation are novel risk loci for uveal melanoma. Scientific Reports, 2016, 6, 31191.	3.3	28
64	RSK1 Activation Promotes Invasion in Nodular Melanoma. American Journal of Pathology, 2015, 185, 704-716.	3.8	26
65	Impact of aging on host immune response and survival in melanoma: an analysis of 3 patient cohorts. Journal of Translational Medicine, 2016, 14, 299.	4.4	26
66	Differences in clinicopathologic features of prostate cancer between black and white patients treated in the 1990s and 2000s. Urology, 2006, 67, 120-124.	1.0	25
67	Clinicopathological characteristics at primary melanoma diagnosis as risk factors for brain metastasis. Melanoma Research, 2013, 23, 461-467.	1.2	24
68	Melanoma expression of matrix metalloproteinase-23 is associated with blunted tumor immunity and poor responses to immunotherapy. Journal of Translational Medicine, 2014, 12, 342.	4.4	24
69	Revisiting the Clinical and Biologic Relevance ofÂPartial PTEN Loss in Melanoma. Journal of Investigative Dermatology, 2019, 139, 430-438.	0.7	22
70	A simplified interventional mapping system (SIMS) for the selection of combinations of targeted treatments in non-small cell lung cancer. Oncotarget, 2015, 6, 14139-14152.	1.8	22
71	Deep Learning and Pathomics Analyses Reveal Cell Nuclei as Important Features for Mutation Prediction of BRAF-Mutated Melanomas. Journal of Investigative Dermatology, 2022, 142, 1650-1658.e6.	0.7	22
72	The mutational landscape of melanoma brain metastases presenting as the first visceral site of recurrence. British Journal of Cancer, 2021, 124, 156-160.	6.4	21

#	Article	IF	CITATIONS
73	Pathways for Modulating Exosome Lipids Identified By High-Density Lipoprotein-Like Nanoparticle Binding to Scavenger Receptor Type B-1. Scientific Reports, 2016, 6, 22915.	3.3	20
74	Oxidative Phosphorylation Promotes Primary Melanoma Invasion. American Journal of Pathology, 2020, 190, 1108-1117.	3.8	20
75	The Expression Quantitative Trait Loci in Immune Pathways and their Effect on Cutaneous Melanoma Prognosis. Clinical Cancer Research, 2016, 22, 3268-3280.	7.0	19
76	ErbB3–ErbB2 Complexes as a Therapeutic Target in a Subset of Wild-type BRAF/NRAS Cutaneous Melanomas. Cancer Research, 2015, 75, 3554-3567.	0.9	18
77	Constitutive Lck Activity Drives Sensitivity Differences between CD8+ Memory T Cell Subsets. Journal of Immunology, 2016, 197, 644-654.	0.8	18
78	Targeting the Atf7ip–Setdb1 Complex Augments Antitumor Immunity by Boosting Tumor Immunogenicity. Cancer Immunology Research, 2021, 9, 1298-1315.	3.4	18
79	Genetic associations of the interleukin locus at 1q32.1 with clinical outcomes of cutaneous melanoma. Journal of Medical Genetics, 2015, 52, 231-239.	3.2	17
80	MT1-MMP dependent repression of the tumor suppressor SPRY4 contributes to MT1-MMP driven melanoma cell motility. Oncotarget, 2015, 6, 33512-33522.	1.8	17
81	The histone demethylase PHF8 regulates TGFÎ ² signaling and promotes melanoma metastasis. Science Advances, 2022, 8, eabi7127.	10.3	17
82	Shedding of Distinct Cryptic Collagen Epitope (HU177) in Sera of Melanoma Patients. Clinical Cancer Research, 2008, 14, 6253-6258.	7.0	16
83	Challenging the current paradigm of melanoma progression: brain metastasis as isolated first visceral site. Neuro-Oncology, 2012, 14, 849-858.	1.2	16
84	Impact of race on survival in patients with clinically nonmetastatic prostate cancer who deferred primary treatment. Cancer, 2012, 118, 3145-3152.	4.1	16
85	Impact of Socioeconomic Factors on Prostate Cancer Outcomes in Black Patients Treated with Surgery. Urology, 2008, 72, 641-646.	1.0	14
86	Melanoma brain metastases: correlation of imaging features with genomic markers and patient survival. Journal of Neuro-Oncology, 2017, 131, 341-348.	2.9	14
87	TERT, BRAF, and NRAS Mutational Heterogeneity between Paired Primary and Metastatic Melanoma Tumors. Journal of Investigative Dermatology, 2020, 140, 1609-1618.e7.	0.7	14
88	Revisiting the association between skin toxicity and better response in advanced cancer patients treated with immune checkpoint inhibitors. Journal of Translational Medicine, 2020, 18, 430.	4.4	13
89	The urgency of utilizing COVID-19 biospecimens for research in the heart of the global pandemic. Journal of Translational Medicine, 2020, 18, 219.	4.4	13
90	Optimization of an automated tumor-infiltrating lymphocyte algorithm for improved prognostication in primary melanoma. Modern Pathology, 2021, 34, 562-571.	5.5	13

IMAN OSMAN

#	Article	IF	CITATIONS
91	Enhanced immunohistochemical detection of neural infiltration in primary melanoma: is there a clinical value?. Human Pathology, 2014, 45, 1656-1663.	2.0	12
92	Microglandular adenosis is an advanced precursor breast lesion with evidence of molecular progression to matrix-producing metaplastic carcinoma. Human Pathology, 2019, 85, 65-71.	2.0	12
93	Development of five new melanoma low passage cell lines representing the clinical and genetic profile of their tumors of origin. Pigment Cell and Melanoma Research, 2012, 25, 395-397.	3.3	11
94	Adjuvant NY-ESO-1 vaccine immunotherapy in high-risk resected melanoma: a retrospective cohort analysis. , 2018, 6, 38.		11
95	Preexisting immuneâ€mediated inflammatory disease is associated with improved survival and increased toxicity in melanoma patients who receive immune checkpoint inhibitors. Cancer Medicine, 2021, 10, 7457-7465.	2.8	11
96	Impact of Socioeconomic Status and Ethnicity on Melanoma Presentation and Recurrence in Caucasian Patients. Oncology, 2016, 90, 79-87.	1.9	10
97	Treatment with therapeutic anticoagulation is not associated with immunotherapy response in advanced cancer patients. Journal of Translational Medicine, 2021, 19, 47.	4.4	10
98	In vivo Modeling and Molecular Characterization: A Path Toward Targeted Therapy of Melanoma Brain Metastasis. Frontiers in Oncology, 2013, 3, 127.	2.8	9
99	Clinical outcomes in cancer patients with <scp>COVID</scp> â€19. Cancer Reports, 2021, 4, e1413.	1.4	9
100	Increased shedding of HU177 correlates with worse prognosis in primary melanoma. Journal of Translational Medicine, 2010, 8, 19.	4.4	8
101	Computer-assisted measurement of primary tumor area is prognostic of recurrence-free survival in stage IB melanoma patients. Modern Pathology, 2017, 30, 1402-1410.	5.5	8
102	How MicroRNAs Modify Protein Production. Journal of Investigative Dermatology, 2015, 135, 1-5.	0.7	7
103	Association between Kiâ€67 expression and clinical outcomes among patients with clinically nodeâ€negative, thick primary melanoma who underwent nodal staging. Journal of Surgical Oncology, 2018, 118, 150-156.	1.7	7
104	Associations between TERT Promoter Mutations and Survival in Superficial Spreading and Nodular Melanomas in a Large Prospective Patient Cohort. Journal of Investigative Dermatology, 2022, 142, 2733-2743.e9.	0.7	7
105	Immunomodulatory germline variation associated with the development of multiple primary melanoma (MPM). Scientific Reports, 2019, 9, 10173.	3.3	6
106	Germline genetic determinants of immunotherapy response in metastatic melanoma Journal of Clinical Oncology, 2014, 32, 3004-3004.	1.6	6
107	Perspectives in melanoma: meeting report from the "Melanoma Bridge―(December 5th–7th, 2019,) Tj	ETQq1_1 0. ⁻	784314 rgBT
108	The Devil's in the Details: Discrepancy Between Biopsy Thickness and Final Pathology in Acral Melanoma. Annals of Surgical Oncology, 2020, 27, 5259-5266.	1.5	5

#	Article	IF	CITATIONS
109	The effect of ipilimumab on natural killer cells identifies the subset of advanced melanoma patients with clinical response Journal of Clinical Oncology, 2015, 33, 9065-9065.	1.6	5
110	Quality Assurance After a Natural Disaster: Lessons from Hurricane Sandy. Biopreservation and Biobanking, 2018, 16, 92-96.	1.0	4
111	Prediction of response and toxicity to immune checkpoint inhibitor therapies (ICI) in melanoma using deep neural networks machine learning Journal of Clinical Oncology, 2018, 36, 9529-9529.	1.6	3
112	Genetic variation in immunomodulatory genes as markers of melanoma recurrence-free and overall survival Journal of Clinical Oncology, 2013, 31, 9021-9021.	1.6	3
113	Somatic and germline analyses of a long term melanoma survivor with a recurrent brain metastasis. BMC Cancer, 2015, 15, 926.	2.6	2
114	Impact of molecular testing in advanced melanoma on outcomes in a tertiary cancer center and as reported in a publicly available database. Cancer Reports, 2021, 4, e1380.	1.4	2
115	Autoimmune genetic variants as germline biomarkers of response in melanoma immunotherapy treatment Journal of Clinical Oncology, 2018, 36, 3079-3079.	1.6	2
116	Gut microbiome and immunotherapy response in melanoma patients Journal of Clinical Oncology, 2018, 36, 9575-9575.	1.6	2
117	Bone metastasis to predict treatment response rate and overall survival of patients with metastatic melanoma Journal of Clinical Oncology, 2018, 36, e21585-e21585.	1.6	2
118	Mutation burden in conjunction with MAPK-pathway mutation status as a prognostic biomarker of overall melanoma survival Journal of Clinical Oncology, 2018, 36, 9584-9584.	1.6	2
119	The "Great Debate―at Melanoma Bridge 2020: December, 5th, 2020. Journal of Translational Medicine, 2021, 19, 142.	4.4	1
120	HERâ€2 profiling and targeting in prostate carcinoma. Cancer, 2002, 94, 980-986.	4.1	1
121	Association of melanoma expression of matrix metalloproteinase-23 with blunted tumor immunity and poor responses to immunotherapy Journal of Clinical Oncology, 2015, 33, e20057-e20057.	1.6	1
122	Using deep learning algorithms on histopathology images for the prediction of <i>BRAF</i> and <i>NRAS</i> mutations in invasive melanoma Journal of Clinical Oncology, 2018, 36, e21561-e21561.	1.6	1
123	Clinical outcome and CD4+ differentiation in anti-CTLA-4/radiation and anti-CTLA-4/steroid therapy Journal of Clinical Oncology, 2014, 32, 3019-3019.	1.6	1
124	Targeting EZH2 in acral lentiginous melanoma (ALM) Journal of Clinical Oncology, 2017, 35, 9534-9534.	1.6	1
125	Primary melanoma histologic subtype (HS) impacts melanoma specific survival (MSS) and response to systemic therapy Journal of Clinical Oncology, 2017, 35, 9577-9577.	1.6	1
126	A Robust Discovery Platform for the Identification of Novel Mediators of Melanoma Metastasis. Journal of Visualized Experiments, 2022, , .	0.3	1

#	Article	IF	CITATIONS
127	Genome-wide association study to reveal novel germline markers of melanoma survival Journal of Clinical Oncology, 2021, 39, 9581-9581.	1.6	0
128	Association of pre-existing autoimmune diseases in melanoma patients receiving immune checkpoint inhibition with improved survival and increased toxicity Journal of Clinical Oncology, 2021, 39, e21586-e21586.	1.6	0
129	Outcomes for hospitalized cancer patients with COVID-19 during the height of pandemic in New York City Journal of Clinical Oncology, 2021, 39, 10572-10572.	1.6	0
130	The risk and tropism of central nervous system metastases (CNS) in patients with stage II cutaneous melanoma Journal of Clinical Oncology, 2021, 39, 9551-9551.	1.6	0
131	Elucidating distinct tumorigenic pathways in nodular versus superficial spreading melanoma Journal of Clinical Oncology, 2012, 30, 8544-8544.	1.6	0
132	Tim-3 expression and function in natural killer cells from advanced melanoma patients Journal of Clinical Oncology, 2012, 30, 8571-8571.	1.6	0
133	The melanoma risk loci as determinants of melanoma prognosis Journal of Clinical Oncology, 2012, 30, 8557-8557.	1.6	0
134	MicroRNA alterations associated with <i>BRAF</i> status in melanoma Journal of Clinical Oncology, 2012, 30, 8565-8565.	1.6	0
135	Early alterations of microRNA expression to predict and modulate melanoma metastasis Journal of Clinical Oncology, 2012, 30, 8550-8550.	1.6	0
136	Prognostic value of mitosis-specific antibodies and computer image analysisÂin calculatingÂmitotic rateÂin melanoma Journal of Clinical Oncology, 2012, 30, e19003-e19003.	1.6	0
137	TILs in metastatic melanoma tumors: A biomarker for immunotherapy?. Journal of Clinical Oncology, 2012, 30, 8589-8589.	1.6	0
138	Identification of melanoma-specific alterations in cell surface glycosylation Journal of Clinical Oncology, 2012, 30, e19018-e19018.	1.6	0
139	Impact of age on treatment of primary melanoma patients Journal of Clinical Oncology, 2013, 31, 9054-9054.	1.6	0
140	The clinical and biologic impact of PPP6C mutations in melanoma Journal of Clinical Oncology, 2013, 31, 9067-9067.	1.6	0
141	Melanoma recurrence risk stratification using Bayesian systems biology modeling Journal of Clinical Oncology, 2013, 31, 9089-9089.	1.6	0
142	Analysis of plasma-based <i>BRAF</i> and <i>NRAS</i> mutation detection in patients with stage III and IV melanoma Journal of Clinical Oncology, 2013, 31, 9023-9023.	1.6	0
143	Molecular underpinning of melanoma histologic subtypes in the metastatic setting Journal of Clinical Oncology, 2014, 32, e20053-e20053.	1.6	0
144	Integration of melanoma genotyping in clinical care Journal of Clinical Oncology, 2014, 32, 9095-9095.	1.6	0

#	Article	IF	CITATIONS
145	Preclinical testing supports combined BET and BRAF inhibition as a promising therapeutic strategy for melanoma Journal of Clinical Oncology, 2014, 32, 9072-9072.	1.6	0
146	Matrix metalloproteinase-23 as a new immunotherapeutic checkpoint target in melanoma Journal of Clinical Oncology, 2014, 32, 3030-3030.	1.6	0
147	Dissecting the effect of age on immune response in melanoma patients Journal of Clinical Oncology, 2014, 32, 9058-9058.	1.6	0
148	The genetic variants in interleukin locus at 1q32.1 as markers of melanoma survival Journal of Clinical Oncology, 2014, 32, 9094-9094.	1.6	0
149	Association of natural killer (NK) cell exhaustion with melanoma progression Journal of Clinical Oncology, 2014, 32, 9099-9099.	1.6	0
150	Clinical utility of serum miRNAs for the prediction and early detection of recurrence in melanoma patients Journal of Clinical Oncology, 2014, 32, 9046-9046.	1.6	0
151	Droplet digital PCR monitoring of BRAF and NRAS plasma DNA as biomarkers of treatment response in stage IV melanoma Journal of Clinical Oncology, 2014, 32, 9019-9019.	1.6	0
152	Analysis of recurrence patterns in acral versus non-acral melanoma: Should histologic subtype influence treatment guidelines?. Journal of Clinical Oncology, 2014, 32, 9052-9052.	1.6	0
153	The expression quantitative trait loci (eQTLs) and their association with melanoma clinical outcomes Journal of Clinical Oncology, 2015, 33, 9061-9061.	1.6	0
154	The impact of primary melanoma histotype on overall survival and response to immunotherapy Journal of Clinical Oncology, 2015, 33, e20078-e20078.	1.6	0
155	Tumor infiltrating lymphocyte (TIL) classifications and association with survival in primary melanomas Journal of Clinical Oncology, 2015, 33, e20042-e20042.	1.6	0
156	Impact of socioeconomic status (SES) and ethnicity on melanoma presentation and recurrence in Caucasian patients Journal of Clinical Oncology, 2015, 33, e20098-e20098.	1.6	0
157	De novo versus nevus-associated melanomas: Differences in associations with prognostic indicators and survival Journal of Clinical Oncology, 2015, 33, 9025-9025.	1.6	0
158	Immunologic profile of melanoma brain metastases (MBM) in patients (pts) with prolonged survival Journal of Clinical Oncology, 2015, 33, 9070-9070.	1.6	0
159	Metastatic melanoma outcomes in the era of commercially available targeted therapy and immunotherapy Journal of Clinical Oncology, 2016, 34, e21017-e21017.	1.6	0
160	Impact of aging on immune response and survival in melanoma Journal of Clinical Oncology, 2016, 34, e21079-e21079.	1.6	0
161	Targeted next-generation sequencing of melanoma patient samples to reveal mutations in non-protein coding regions of targetable oncogenes Journal of Clinical Oncology, 2016, 34, 9559-9559.	1.6	0
162	Genomic characterization of acral lentiginous melanoma: Identification of altered metabolism as a potential therapeutic target Journal of Clinical Oncology, 2016, 34, 9524-9524.	1.6	0

#	Article	IF	CITATIONS
163	Analysis of TERT promoter mutations, polymorphisms, clinicopathologic features and recurrence-free survival in primary melanoma Journal of Clinical Oncology, 2016, 34, e21065-e21065.	1.6	0
164	Expression quantitative trait loci (eQTLs) as germline determinants of melanoma immunotherapy response Journal of Clinical Oncology, 2017, 35, 3017-3017.	1.6	0
165	Using autoantibody signatures to predict immunotherapy discontinuation in melanoma patients Journal of Clinical Oncology, 2020, 38, 3069-3069.	1.6	Ο
166	Lack of evidence to support large-panel genomic testing in treatment selection for malignant melanoma Journal of Clinical Oncology, 2020, 38, e22027-e22027.	1.6	0
167	CDC20 is a novel potential therapeutic target in NF1-mutant melanoma Journal of Clinical Oncology, 2020, 38, e22075-e22075.	1.6	Ο
168	The "Great Debate―at Melanoma Bridge 2021, December 2nd–4th, 2021. Journal of Translational Medicine, 2022, 20, 200.	4.4	0
169	Trajectory of aging following diagnosis of cancer Journal of Clinical Oncology, 2022, 40, 12087-12087.	1.6	Ο
170	The association between mediators of the receptor for advanced glycation end product (RAGE) axis and immune checkpoint inhibitor (ICI)–induced colitis in patients with melanoma Journal of Clinical	1.6	0

Oncology, 2022, 40, 9587-9587.