
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3100234/publications.pdf Version: 2024-02-01

CHUNMEL RAN

#	Article	IF	CITATIONS
1	Nanostructured Fe ₃ O ₄ /SWNT Electrode: Binderâ€Free and Highâ€Rate Liâ€Ion Anode. Advanced Materials, 2010, 22, E145-9.	21.0	556
2	An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nature Chemistry, 2018, 10, 532-539.	13.6	347
3	Challenges for and Pathways toward Li-Metal-Based All-Solid-State Batteries. ACS Energy Letters, 0, , 1399-1404.	17.4	228
4	Unexpected Improved Performance of ALD Coated LiCoO ₂ /Graphite Liâ€ion Batteries. Advanced Energy Materials, 2013, 3, 213-219.	19.5	206
5	Effect of Al ₂ O ₃ Coating on Stabilizing LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂ Cathodes. Chemistry of Materials, 2015, 27, 6146-6154.	6.7	185
6	Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes. Nature Communications, 2018, 9, 2490.	12.8	170
7	Reversible High apacity Si Nanocomposite Anodes for Lithiumâ€ion Batteries Enabled by Molecular Layer Deposition. Advanced Materials, 2014, 26, 1596-1601.	21.0	169
8	Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nature Communications, 2014, 5, 3358.	12.8	163
9	Conformal Coatings of Cyclizedâ€PAN for Mechanically Resilient Si nanoâ€Composite Anodes. Advanced Energy Materials, 2013, 3, 697-702.	19.5	134
10	Electrospun nano-vanadium pentoxide cathode. Electrochemistry Communications, 2009, 11, 522-525.	4.7	118
11	Surface-Coating Regulated Lithiation Kinetics and Degradation in Silicon Nanowires for Lithium Ion Battery. ACS Nano, 2015, 9, 5559-5566.	14.6	118
12	<i>In Situ</i> Transmission Electron Microscopy Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion Batteries. ACS Nano, 2014, 8, 11816-11823.	14.6	99
13	Effect of interface modifications on voltage fade in 0.5Li2MnO3·0.5LiNi0.375Mn0.375Co0.25O2 cathode materials. Journal of Power Sources, 2014, 249, 509-514.	7.8	89
14	Strategies to Enable Reversible Magnesium Electrochemistry: From Electrolytes to Artificial Solid–Electrolyte Interphases. Angewandte Chemie - International Edition, 2021, 60, 11036-11047.	13.8	81
15	Atomic layer deposition of amorphous TiO ₂ on graphene as an anode for Li-ion batteries. Nanotechnology, 2013, 24, 424002.	2.6	76
16	Extremely Durable Highâ€Rate Capability of a LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂ Cathode Enabled with Singleâ€Walled Carbon Nanotubes. Advanced Energy Materials, 2011, 1, 58-62.	19.5	74
17	Spatially Resolving Lithiation in Silicon–Graphite Composite Electrodes via in Situ High-Energy X-ray Diffraction Computed Tomography. Nano Letters, 2019, 19, 3811-3820.	9.1	73
18	A Novel Codoping Approach for Enhancing the Performance of LiFePO ₄ Cathodes. Advanced Energy Materials, 2012, 2, 1028-1032.	19.5	72

#	Article	IF	CITATIONS
19	Interfacially Induced Cascading Failure in Graphite‧ilicon Composite Anodes. Advanced Science, 2019, 6, 1801007.	11.2	66
20	Direct synthesis of thermochromic VO2 through hydrothermal reaction. Journal of Solid State Chemistry, 2014, 212, 237-241.	2.9	62
21	Molecular Layer Deposition for Surface Modification of Lithiumâ€Ion Battery Electrodes. Advanced Materials Interfaces, 2016, 3, 1600762.	3.7	59
22	Lithiation of silica through partial reduction. Applied Physics Letters, 2012, 100, .	3.3	57
23	Three-dimensional electronic resistivity mapping of solid electrolyte interphase on Si anode materials. Nano Energy, 2019, 55, 477-485.	16.0	56
24	Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries. AIP Advances, 2016, 6, .	1.3	48
25	Temperature-Dependent Solubility of Solid Electrolyte Interphase on Silicon Electrodes. ACS Energy Letters, 2019, 4, 2770-2775.	17.4	45
26	Nonpassivated Silicon Anode Surface. ACS Applied Materials & amp; Interfaces, 2020, 12, 26593-26600.	8.0	45
27	Towards understanding the rate capability of layered transition metal oxides LiNiyMnyCo1â~'2yO2. Journal of Power Sources, 2014, 268, 106-112.	7.8	41
28	Facile Synthesis of Lithium Sulfide Nanocrystals for Use in Advanced Rechargeable Batteries. ACS Applied Materials & Interfaces, 2015, 7, 28444-28451.	8.0	39
29	Structure and Reactivity of Alucone-Coated Films on Si and Li _{<i>x</i>} Si _{<i>y</i>} Surfaces. ACS Applied Materials & Interfaces, 2015, 7, 11948-11955.	8.0	39
30	Surface SiO ₂ Thickness Controls Uniform-to-Localized Transition in Lithiation of Silicon Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 27017-27028.	8.0	37
31	First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries. Journal of Physical Chemistry Letters, 2011, 2, 1129-1132.	4.6	36
32	Nanoscale single-crystal vanadium oxides with layered structure by electrospinning and hydrothermal methods. Solid State Ionics, 2008, 179, 1721-1724.	2.7	30
33	Cross-linked aluminum dioxybenzene coating for stabilization of silicon electrodes. Nano Energy, 2016, 22, 202-210.	16.0	30
34	In Situ Engineering of the Electrode–Electrolyte Interface for Stabilized Overlithiated Cathodes. Advanced Materials, 2017, 29, 1604549.	21.0	26
35	Atomic layer deposition in porous electrodes: A pore-scale modeling study. Chemical Engineering Journal, 2019, 378, 122099.	12.7	26
36	Towards high rate Li metal anodes: enhanced performance at high current density in a superconcentrated ionic liquid. Journal of Materials Chemistry A, 2020, 8, 3574-3579.	10.3	25

#	Article	IF	CITATIONS
37	Synchronized electrospinning and electrospraying technique for manufacturing of all-solid-state lithium-ion batteries. Journal of Power Sources, 2019, 431, 17-24.	7.8	23
38	High Current Cycling in a Superconcentrated Ionic Liquid Electrolyte to Promote Uniform Li Morphology and a Uniform LiF-Rich Solid Electrolyte Interphase. ACS Applied Materials & Interfaces, 2020, 12, 42236-42247.	8.0	23
39	Fast Determination of Lithium Content in Spent Cathodes for Direct Battery Recycling. Advanced Sustainable Systems, 2020, 4, 2000073.	5.3	23
40	HWCVD MoO3 nanoparticles and a-Si for next generation Li-ion anodes. Thin Solid Films, 2011, 519, 4495-4497.	1.8	22
41	Surface Modification of Silicon Anodes for Durable and HighEnergy Lithiumâ€lon Batteries. Israel Journal of Chemistry, 2015, 55, 558-569.	2.3	21
42	Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	20
43	Spatial Molecular Layer Deposition of Ultrathin Polyamide To Stabilize Silicon Anodes in Lithium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 4135-4143.	5.1	20
44	P-type doping of lithium peroxide with carbon sheets. Applied Physics Letters, 2012, 101, .	3.3	19
45	Evolution of solid electrolyte interphase and active material in the silicon wafer model system. Journal of Power Sources, 2021, 482, 228946.	7.8	19
46	Charge-driven structural transformation and valence versatility of boron sheets in magnesium borides. Physical Review B, 2011, 83, .	3.2	18
47	Systematic Investigation of the Alucone-Coating Enhancement on Silicon Anodes. ACS Applied Materials & Interfaces, 2017, 9, 40143-40150.	8.0	18
48	Origin of Bonding between the SWCNT and the Fe ₃ O ₄ (001) Surface and the Enhanced Electrical Conductivity. Journal of Physical Chemistry Letters, 2011, 2, 2853-2858.	4.6	17
49	Mitigating irreversible capacity losses from carbon agents via surface modification. Journal of Power Sources, 2015, 275, 605-611.	7.8	14
50	Electrochemically induced fractures in crystalline silicon anodes. Journal of Power Sources, 2019, 425, 44-49.	7.8	14
51	All-solid-state disordered LiTiS2pseudocapacitor. Journal of Materials Chemistry A, 2017, 5, 15661-15668.	10.3	13
52	Enabling Magnesium Anodes by Tuning the Electrode/Electrolyte Interfacial Structure. ACS Applied Materials & Interfaces, 2021, 13, 52461-52468.	8.0	13
53	Lithium Substituted Poly(acrylic acid) as a Mechanically Robust Binder for Low-Cost Silicon Microparticle Electrodes. ACS Applied Energy Materials, 2020, 3, 10940-10949.	5.1	10
54	Strategies to Enable Reversible Magnesium Electrochemistry: From Electrolytes to Artificial Solid–Electrolyte Interphases. Angewandte Chemie, 2021, 133, 11136-11147.	2.0	10

#	Article	IF	CITATIONS
55	Mitigation of rapid capacity decay in silicon- LiNi0.6Mn0.2Co0.2O2 full batteries. Energy Storage Materials, 2022, 49, 111-121.	18.0	8
56	Improved Electrochemical Performance of Carbon-Coated LiFeBO3 Nanoparticles for Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2015, 15, 7186-7190.	0.9	4
57	Microstructure Study on Initial Lithiation/Delithiation Cycle of Crystalline Silicon Wafer. Microscopy and Microanalysis, 2019, 25, 2098-2099.	0.4	1
58	A Proposed General Solution for Li Dendrite Penetration into Solid Electrolytes. ECS Meeting Abstracts, 2020, MA2020-02, 876-876.	0.0	1
59	High-Capacity and High-Rate Anodes for Li-Ion Batteries. ECS Meeting Abstracts, 2010, , .	0.0	0
60	Surface Coating Effect on Si Nanowires Anodes for Lithium Ion Batteries. Microscopy and Microanalysis, 2015, 21, 321-322.	0.4	0
61	Microstructure Study on Initial Lithiation/Delithiation Cycle of Crystalline Silicon Wafer—ADDENDUM. Microscopy and Microanalysis, 2020, 26, 183-183.	0.4	0
62	Cold Plasma Process for Lithium-Ion Electrode Manufacturing. ECS Meeting Abstracts, 2021, MA2021-01, 184-184.	0.0	0
63	Failure Mechanism for Silicon-NMC Batteries. ECS Meeting Abstracts, 2021, MA2021-01, 119-119.	0.0	0
64	A Simplified Model to Track Si Degradation in Various Systems. ECS Meeting Abstracts, 2021, MA2021-01, 126-126.	0.0	0
65	Reimagining Li-Ion Electrode Fabrication Via Cold Plasma Deposition. ECS Meeting Abstracts, 2021, MA2021-01, 176-176.	0.0	0
66	Surface Modification of Silicon Anodes for Durable and High-Energy Lithium-Ion Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
67	(Invited) Stability and Evolution of Solid Electrolyte Interphase on Silicon Anodes. ECS Meeting Abstracts, 2020, MA2020-01, 406-406.	0.0	0
68	(Invited) Fast Determination of Lithium Content and Failure Mechanism for Aged Lithium-ion Battery Electrodes. ECS Meeting Abstracts, 2021, MA2021-02, 1800-1800.	0.0	0
69	(Invited) Fast Determination of Lithium Content and Failure Mechanism for NMC Cathodes. ECS Meeting Abstracts, 2020, MA2020-02, 9-9.	0.0	0
70	(Keynote) A Proposed Solution to Li Dendrite Penetration Into Solid Electrolytes. ECS Meeting Abstracts, 2021, MA2021-02, 730-730.	0.0	0
71	Plasma Enabled Lithophilic Host for Lithium Anodes. ECS Meeting Abstracts, 2022, MA2022-01, 407-407.	0.0	0