List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3100208/publications.pdf Version: 2024-02-01

240 papers	16,104 citations	19655 61 h-index	²¹⁵³⁹ 114 g-index
242	242	242	8634
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Chronology, causes and progression of the Messinian salinity crisis. Nature, 1999, 400, 652-655.	27.8	1,540
2	Synchronizing Rock Clocks of Earth History. Science, 2008, 320, 500-504.	12.6	1,229
3	Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature, 2007, 445, 635-638.	27.8	501
4	The Neogene Period. , 2012, , 923-978.		500
5	The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences. Marine Geology, 2014, 352, 25-58.	2.1	436
6	Extending the astronomical (polarity) time scale into the Miocene. Earth and Planetary Science Letters, 1995, 136, 495-510.	4.4	373
7	A calibrated mammal scale for the Neogene of Western Europe. State of the art. Earth-Science Reviews, 2001, 52, 247-260.	9.1	281
8	Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova, 2013, 25, 315-322.	2.1	232
9	Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299, 385-398.	2.3	225
10	Late Neogene evolution of the Taza–Guercif Basin (Rifian Corridor, Morocco) and implications for the Messinian salinity crisis. Marine Geology, 1999, 153, 147-160.	2.1	207
11	Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis. Earth and Planetary Science Letters, 2010, 290, 183-191.	4.4	194
12	Astrochronology for the Messinian Sorbas basin (SE Spain) and orbital (precessional) forcing for evaporite cyclicity. Sedimentary Geology, 2001, 140, 43-60.	2.1	176
13	Evolution of the Late Miocene Mediterranean–Atlantic gateways and their impact on regional and global environmental change. Earth-Science Reviews, 2015, 150, 365-392.	9.1	171
14	The Abad composite (SE Spain): a Messinian reference section for the Mediterranean and the APTS. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 168, 141-169.	2.3	167
15	Late Miocene magnetostratigraphy, biostratigraphy and cyclostratigraphy in the Mediterranean. Earth and Planetary Science Letters, 1995, 136, 475-494.	4.4	160
16	A new chronology for the end-Triassic mass extinction. Earth and Planetary Science Letters, 2010, 291, 113-125.	4.4	158
17	Cyclostratigraphy and astrochronology of the Tripoli diatomite formation (pre-evaporite Messinian,) Tj ETQq1 1	0.784314 2.1	rgBT /Overloo 156

18 Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. Journal of Geophysical Research, 2006, 111, n/a-n/a.

3.3 149

#	Article	IF	CITATIONS
19	Quaternary time scales for the Pontocaspian domain: Interbasinal connectivity and faunal evolution. Earth-Science Reviews, 2019, 188, 1-40.	9.1	147
20	Step-wise change of Asian interior climate preceding the Eocene–Oligocene Transition (EOT). Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299, 399-412.	2.3	137
21	Astronomical constraints on the duration of the early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St Audrie's Bay/East Quantoxhead, UK). Earth and Planetary Science Letters, 2010, 295, 262-276.	4.4	136
22	A new chronology for the middle to late Miocene continental record in Spain. Earth and Planetary Science Letters, 1996, 142, 367-380.	4.4	135
23	Integrated stratigraphy and astronomical tuning of the Serravallian and lower Tortonian at Monte dei Corvi (Middle–Upper Miocene, northern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 199, 229-264.	2.3	132
24	The Mediterranean: Mare Nostrum of Earth sciences. Earth and Planetary Science Letters, 2002, 205, 1-12.	4.4	125
25	A quantitative analysis of the desiccation and re-filling of the Mediterranean during the Messinian Salinity Crisis. Earth and Planetary Science Letters, 2005, 240, 510-520.	4.4	123
26	The upper Miocene mammal record from the Teruel-Alfambra region (Spain). The MN system and continental stage/age concepts discussed. Journal of Vertebrate Paleontology, 2001, 21, 367-385.	1.0	119
27	The onset of the Messinian salinity crisis in the Eastern Mediterranean (Pissouri Basin, Cyprus). Earth and Planetary Science Letters, 2002, 194, 299-310.	4.4	119
28	Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene. Basin Research, 2014, 26, 621-640.	2.7	119
29	Towards an astrochronological framework for the eastern Paratethys Mio–Pliocene sedimentary sequences of the FocÅŸani basin (Romania). Earth and Planetary Science Letters, 2004, 227, 231-247.	4.4	117
30	Evidence for African–Iberian exchanges during the Messinian in the Spanish mammalian record. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 238, 5-14.	2.3	117
31	Age of the Badenian salinity crisis; impact of Miocene climate variability on the circum-Mediterranean region. Geology, 2010, 38, 715-718.	4.4	117
32	The 'Tortonian salinity crisis' of the eastern Betics (Spain). Earth and Planetary Science Letters, 2000, 181, 497-511.	4.4	115
33	Chronology of the late Turolian deposits of the Fortuna basin (SE Spain): implications for the Messinian evolution of the eastern Betics. Earth and Planetary Science Letters, 1998, 163, 69-81.	4.4	114
34	Long-period orbital control on middle Miocene global cooling: Integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta. Paleoceanography, 2005, 20, n/a-n/a.	3.0	113
35	Integrated stratigraphy and astrochronology of the Messinian GSSP at Oued Akrech (Atlantic) Tj ETQq1 1 0.784	314 rgBT / 4.4	'Overlock 10 108
36	Integrated stratigraphy and astronomical calibration of the Serravallian/Tortonian boundary section	1.2	104

at Monte Gibliscemi (Sicily, Italy). Marine Micropaleontology, 2000, 38, 181-211.

1.2 104

#	Article	IF	CITATIONS
37	The Gibraltar Corridor: Watergate of the Messinian Salinity Crisis. Marine Geology, 2018, 403, 238-246.	2.1	104
38	The Messinian of the Nijar Basin (SE Spain): sedimentation, depositional environments and paleogeographic evolution. Sedimentary Geology, 2003, 160, 213-242.	2.1	103
39	Putative greigite magnetofossils from the Pliocene epoch. Nature Geoscience, 2008, 1, 782-786.	12.9	96
40	Depositional environments of the Mediterranean "Lower Evaporites―of the Messinian salinity crisis: Constraints from quantitative analyses. Marine Geology, 2008, 253, 73-81.	2.1	93
41	Oligocene–Miocene basin evolution in SE Anatolia, Turkey: constraints on the closure of the eastern Tethys gateway. Geological Society Special Publication, 2009, 311, 107-132.	1.3	90
42	The age of the Tortonian/Messinian boundary. Earth and Planetary Science Letters, 1994, 121, 533-547.	4.4	87
43	Messinian pre-evaporite sapropels and precession-induced oscillations in western Mediterranean climate. Marine Geology, 1999, 153, 137-146.	2.1	86
44	Paleoenvironmental evolution of the eastern Mediterranean during the Messinian: Constraints from integrated microfossil data of the Pissouri Basin (Cyprus). Marine Micropaleontology, 2006, 60, 17-44.	1.2	86
45	Palaeoenvironmental reconstruction of a middle Miocene alluvial fan to cyclic shallow lacustrine depositional system in the Calatayud Basin (NE Spain). Sedimentology, 2003, 50, 211-236.	3.1	82
46	The upper Tortonian–lower Messinian at Monte dei Corvi (Northern Apennines, Italy): Completing a Mediterranean reference section for the Tortonian Stage. Earth and Planetary Science Letters, 2009, 282, 140-157.	4.4	82
47	Magnetostratigraphic dating of the middle Miocene climate change in the continental deposits of the Aragonian type area in the Calatayud-Teruel basin (Central Spain). Earth and Planetary Science Letters, 1994, 128, 513-526.	4.4	81
48	Completing the Neogene geological time scale between 8.5 and 12.5ÂMa. Earth and Planetary Science Letters, 2007, 253, 340-358.	4.4	80
49	Paleoenvironmental evolution of the East Carpathian foredeep during the late Miocene–early Pliocene (Dacian Basin; Romania). Global and Planetary Change, 2013, 103, 135-148.	3.5	76
50	The Neogene Period. , 2020, , 1141-1215.		75
51	Regional isostatic response to Messinian Salinity Crisis events. Tectonophysics, 2009, 463, 109-129.	2.2	74
52	Stratigraphy and sedimentology of the Aragonian (Early to Middle Miocene) in its type area (North-Central Spain). Newsletters on Stratigraphy, 1999, 37, 103-139.	1.2	74
53	The isolation of the Pannonian basin (Central Paratethys): New constraints from magnetostratigraphy and biostratigraphy. Global and Planetary Change, 2013, 103, 99-118.	3.5	72
54	Aragonian stratigraphy reconsidered, and a re-evaluation of the middle Miocene mammal biochronology in Europe. Earth and Planetary Science Letters, 1999, 165, 287-294.	4.4	71

#	Article	IF	CITATIONS
55	A magnetostratigraphic time frame for Plio-Pleistocene transgressions in the South Caspian Basin, Azerbaijan. Global and Planetary Change, 2013, 103, 119-134.	3.5	70
56	Magnetostratigraphy and radio-isotope dating of upper Miocene–lower Pliocene sedimentary successions of the Black Sea Basin (Taman Peninsula, Russia). Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 310, 163-175.	2.3	69
57	The Global Boundary Stratotype Section and Point (CSSP) of the Messinian Stage (uppermost Miocene). Episodes, 2000, 23, 172-178.	1.2	68
58	Chronostratigraphic framework and evolution of the Fortuna basin (Eastern Betics) since the Late Miocene. Basin Research, 2001, 13, 199-216.	2.7	67
59	Magnetostratigraphy concepts, definitions, and applications. Newsletters on Stratigraphy, 2010, 43, 207-233.	1.2	66
60	Paratethyan ostracods in the Spanish Lago-Mare: More evidence for interbasinal exchange at high Mediterranean sea level. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441, 854-870.	2.3	66
61	Mio-Pliocene magnetostratigraphy in the southern Carpathian foredeep and Mediterranean-Paratethys correlations. Terra Nova, 2005, 17, 376-384.	2.1	65
62	On the late Miocene closure of the Mediterranean–Atlantic gateway through the Guadix basin (southern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291, 167-179.	2.3	65
63	Astrochronology of the Mediterranean Langhian between 15.29 and 14.17Ma. Earth and Planetary Science Letters, 2010, 290, 254-269.	4.4	64
64	Present status of the astronomical (polarity) time-scale for the Mediterranean Late Neogene. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1999, 357, 1931-1947.	3.4	63
65	Paleomagnetic and chronostratigraphic constraints on the Middle to Late Miocene evolution of the Transylvanian Basin (Romania): Implications for Central Paratethys stratigraphy and emplacement of the Tisza–Dacia plate. Global and Planetary Change, 2013, 103, 82-98.	3.5	63
66	Identification and environmental interpretation of diagenetic and biogenic greigite in sediments: A lesson from the Messinian Black Sea. Geochemistry, Geophysics, Geosystems, 2014, 15, 3612-3627.	2.5	63
67	Early diagenetic greigite as a recorder of the palaeomagnetic signal in Miocene-Pliocene sedimentary rocks of the Carpathian foredeep (Romania). Geophysical Journal International, 2007, 171, 613-629.	2.4	61
68	Paleomagnetic and geochronologic constraints on the geodynamic evolution of the Central Dinarides. Tectonophysics, 2012, 530-531, 286-298.	2.2	61
69	Changing seas in the Early–Middle Miocene of Central Europe: a Mediterranean approach to Paratethyan stratigraphy. Terra Nova, 2017, 29, 273-281.	2.1	61
70	The Global boundary Stratotype Section and Point (GSSP) of the Tortonian Stage (Upper Miocene) at Monte Dei Corvi. Episodes, 2005, 28, 6-17.	1.2	61
71	Breakthrough made in dating of the geological record. Eos, 1997, 78, 285.	0.1	60
72	Messinian astrochronology of the Melilla Basin: Stepwise restriction of the Mediterranean–Atlantic connection through Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 238, 15-31.	2.3	60

50

#	Article	IF	CITATIONS
73	No major deglaciation across the Miocene-Pliocene boundary: Integrated stratigraphy and astronomical tuning of the Loulja sections (Bou Regreg area, NW Morocco). Paleoceanography, 2006, 21, .	3.0	60
74	Sandy contourite drift in the late Miocene Rifian Corridor (Morocco): Reconstruction of depositional environments in a foreland-basin seaway. Sedimentary Geology, 2017, 355, 31-57.	2.1	60
75	Post-early Messinian counterclockwise rotations on Crete: implications for Late Miocene to Recent kinematics of the southern Hellenic arc. Tectonophysics, 1998, 298, 177-189.	2.2	59
76	An astronomical polarity timescale for the late middle Miocene based on cyclic continental sequences. Journal of Geophysical Research, 2003, 108, .	3.3	59
77	Discrete Plio-Pleistocene phases of tilting and counterclockwise rotation in the southeastern Aegean arc (Rhodos, Greece): early Pliocene formation of the south Aegean left-lateral strike-slip system. Journal of the Geological Society, 2007, 164, 1133-1144.	2.1	58
78	Messinian salinity crisis: A novel unifying shallow gypsum/deep dolomite formation mechanism. Marine Geology, 2010, 275, 273-277.	2.1	58
79	One or two oroclines in the Variscan orogen of Iberia? Implications for Pangea amalgamation. Geology, 2015, 43, 527-530.	4.4	58
80	Middle Miocene paleoenvironmental crises in Central Eurasia caused by changes in marine gateway configuration. Global and Planetary Change, 2017, 158, 57-71.	3.5	58
81	The Global Stratotype Section and Point (GSSP) of the Serravallian Stage (Middle Miocene). Episodes, 2009, 32, 152-166.	1.2	58
82	A new magnetostratigraphic framework for the Lower Miocene (Burdigalian/Ottnangian, Karpatian) in the North Alpine Foreland Basin. Swiss Journal of Geosciences, 2013, 106, 309-334.	1.2	57
83	Impact of the Messinian Salinity Crisis on Black Sea hydrology—Insights from hydrogen isotopes analysis on biomarkers. Earth and Planetary Science Letters, 2013, 362, 272-282.	4.4	57
84	The Badenian–Sarmatian Extinction Event in the Carpathian foredeep basin of Romania: Paleogeographic changes in the Paratethys domain. Global and Planetary Change, 2015, 133, 346-358.	3.5	56
85	Astronomical forcing of sedimentary cycles in the middle to late Miocene continental Calatayud Basin (NE Spain). Earth and Planetary Science Letters, 2000, 177, 9-22.	4.4	54
86	Magnetostratigraphic dating of the proposed Rhaetian GSSP at Steinbergkogel (Upper Triassic,) Tj ETQq0 0 0 rgf 203-216.	3T /Overlo 4.4	ck 10 Tf 50 2 54
87	Paratethyan–Mediterranean connectivity in the Sea of Marmara region (NW Turkey) during the Messinian. Sedimentary Geology, 2006, 188-189, 171-187.	2.1	53
88	Long-period eccentricity control on sedimentary sequences in the continental Madrid Basin (middle) Tj ETQq0 0 (D rgBT /Ov	erlock 10 Tf
89	Palaeogeographic evolution of the late Miocene Rifian Corridor (Morocco): Reconstructions from surface and subsurface data. Earth-Science Reviews, 2018, 180, 37-59.	9.1	52

90Tectonic and climatic controls on coastal sedimentation: The Late Plioceneâ€"Middle Pleistocene of
northeastern Rhodes, Greece. Sedimentary Geology, 2006, 187, 159-181.2.1

#	Article	IF	CITATIONS
91	Lowâ€temperature magnetic properties of pelagic carbonates: Oxidation of biogenic magnetite and identification of magnetosome chains. Journal of Geophysical Research: Solid Earth, 2013, 118, 6049-6065.	3.4	50
92	The Monte del Casino section (Northern Apennines, Italy): a potential Tortonian/Messinian boundary stratotype?. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 133, 27-47.	2.3	49
93	Paleogeographic evolution of the Southern Pannonian Basin: 40Ar/39Ar age constraints on the Miocene continental series of Northern Croatia. International Journal of Earth Sciences, 2012, 101, 1033-1046.	1.8	49
94	On the age of the continentaldeposits of the Zorreras Member (Sorbas Basin, SE Spain). Geobios, 2000, 33, 505-512.	1.4	48
95	Mediterranean outflow pump: An alternative mechanism for the Lago-mare and the end of the Messinian Salinity Crisis. Geology, 2016, 44, 523-526.	4.4	48
96	Messinian sea level fall in the Dacic Basin (Eastern Paratethys): palaeogeographical implications from seismic sequence stratigraphy. Terra Nova, 2010, 22, 12-17.	2.1	47
97	Shallow bias in Mediterranean paleomagnetic directions caused by inclination error. Earth and Planetary Science Letters, 2004, 222, 685-695.	4.4	46
98	E/I corrected paleolatitudes for the sedimentary rocks of the Baja British Columbia hypothesis. Earth and Planetary Science Letters, 2006, 242, 205-216.	4.4	46
99	The age of the Sarmatian–Pannonian transition in the Transylvanian Basin (Central Paratethys). Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297, 54-69.	2.3	46
100	Tectonic control for evaporite formation in the Eastern Betics (Tortonian; Spain). Sedimentary Geology, 2006, 188-189, 155-170.	2.1	45
101	Chronology and integrated stratigraphy of the Miocene Sinj Basin (Dinaride Lake System, Croatia). Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292, 155-167.	2.3	45
102	Thick-skinned tectonics closing the Rifian Corridor. Tectonophysics, 2017, 710-711, 249-265.	2.2	45
103	Late Miocene contourite channel system reveals intermittent overflow behavior. Geology, 2020, 48, 1194-1199.	4.4	45
104	Early Pleistocene climate cycles in continental deposits of the Lesser Caucasus of Armenia inferred from palynology, magnetostratigraphy, and 40Ar/39Ar dating. Earth and Planetary Science Letters, 2010, 291, 149-158.	4.4	44
105	Magnetic polarity stratigraphy of late Oligocene to middle Miocene mammal-bearing continental deposits in Central Anatolia (Turkey). Newsletters on Stratigraphy, 1996, 34, 13-29.	1.2	44
106	Direct comparison of astronomical and40Ar/39Ar ages of ash beds: Potential implications for the age of mineral dating standards. Geophysical Research Letters, 1997, 24, 2043-2046.	4.0	43
107	Western versus eastern Mediterranean paleoceanographic response to astronomical forcing: a high-resolution microplankton study of precession-controlled sedimentary cycles during the Messinian. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 190, 317-334.	2.3	43
108	Astronomical forcing in Upper Miocene continental sequences: implications for the Geomagnetic Polarity Time Scale. Earth and Planetary Science Letters, 2004, 222, 243-258.	4.4	43

#	Article	IF	CITATIONS
109	Mediterranean-Paratethys connectivity during the Messinian salinity crisis: The Pontian of Azerbaijan. Global and Planetary Change, 2016, 141, 63-81.	3.5	43
110	Quaternary volcano-lacustrine patterns and palaeobotanical data in southern Armenia. Quaternary International, 2010, 223-224, 312-326.	1.5	42
111	The role of gateways in the evolution of temperature and salinity of semi-enclosed basins: An oceanic box model for the Miocene Mediterranean Sea and Paratethys. Global and Planetary Change, 2011, 79, 73-88.	3.5	42
112	Magnetic detection and characterization of biogenic magnetic minerals: A comparison of ferromagnetic resonance and firstâ€order reversal curve diagrams. Journal of Geophysical Research: Solid Earth, 2014, 119, 6136-6158.	3.4	42
113	Calcareous nannofossil biostratigraphy of the M. del Casino section (northern Apennines, Italy) and paleoceanographic conditions at times of Late Miocene sapropel formation. Marine Micropaleontology, 1999, 36, 13-30.	1.2	41
114	A Late Pleistocene clockwise rotation phase of Zakynthos (Greece) and implications for the evolution of the western Aegean arc. Earth and Planetary Science Letters, 1999, 173, 315-331.	4.4	41
115	Late Miocene to Early Pliocene depositional history of the intramontane Florina–Ptolemais–Servia Basin, NW Greece: Interplay between orbital forcing and tectonics. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 238, 151-178.	2.3	40
116	Black Sea desiccation during the Messinian Salinity Crisis: Fact or fiction?. Geology, 2014, 42, 563-566.	4.4	40
117	Late Miocene megalake regressions in Eurasia. Scientific Reports, 2021, 11, 11471.	3.3	40
118	Freshening of the Mediterranean Salt Giant: controversies and certainties around the terminal (Upper) Tj ETQqC	0 0 0 rgBT / 9.1	Ovgrlock 10 T
119	Late Miocene Mediterranean desiccation: topography and significance of the †Salinity Crisis' erosion surface on-land in southeast Spain: Comment. Sedimentary Geology, 2000, 133, 167-174.	2.1	38
120	Palaeoenvironmental evolution of Lake Gacko (Southern Bosnia and Herzegovina): Impact of the Middle Miocene Climatic Optimum on the Dinaride Lake System. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299, 475-492.	2.3	38
121	Astronomically-calibrated magnetostratigraphy of the Lower Jurassic marine successions at St. Audrie's Bay and East Quantoxhead (Hettangian–Sinemurian; Somerset, UK). Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 403, 43-56.	2.3	38
122	Paratethys response to the Messinian salinity crisis. Earth-Science Reviews, 2017, 172, 193-223.	9.1	38
123	Strontium isotope ratios of the Eastern Paratethys during the Mio-Pliocene transition; Implications for interbasinal connectivity. Earth and Planetary Science Letters, 2010, 292, 123-131.	4.4	37
124	The end of the Great Khersonian Drying of Eurasia: Magnetostratigraphic dating of the Maeotian transgression in the Eastern Paratethys. Basin Research, 2019, 31, 33-58.	2.7	37
125	Mollusc assemblages of the Pontian and Dacian deposits from the Topolog-ArgeÅŸ area (southern) Tj ETQq1 1	0.784314 ı 1.4	rgBT /Overloch
126	Cenozoic Rotation History of Borneo and Sundaland, SE Asia Revealed by Paleomagnetism, Seismic Tomography, and Kinematic Reconstruction. Tectonics, 2018, 37, 2486-2512.	2.8	36

T

#	Article	IF	CITATIONS
127	Magnetostratigraphy of the Zobzit and Koudiat Zarga sections (Taza-Guercif basin, Morocco): implications for the evolution of the Rifian Corridor. Marine and Petroleum Geology, 2000, 17, 359-371.	3.3	35
128	Neogene tectonic evolution of the southern and eastern Carpathians constrained by paleomagnetism. Earth and Planetary Science Letters, 2005, 236, 374-387.	4.4	35
129	The Tortonian reference section at Monte dei Corvi (Italy): evidence for early remanence acquisition in greigite-bearing sediments. Geophysical Journal International, 2009, 179, 125-143.	2.4	35
130	Messinian events in the Black Sea. Terra Nova, 2015, 27, 433-441.	2.1	35
131	Conceptual models for shortâ€eccentricityâ€scale climate control on peat formation in a lower Palaeocene fluvial system, northâ€eastern Montana (<scp>USA</scp>). Sedimentology, 2018, 65, 775-808.	3.1	35
132	Mediterranean isolation preconditioning the Earth System for late Miocene climate cooling. Scientific Reports, 2019, 9, 3795.	3.3	35
133	Palaeomagnetic constraints on the geodynamic evolution of the Gibraltar Arc. Terra Nova, 2004, 16, 281-287.	2.1	34
134	Integrated stratigraphy of the Early Miocene lacustrine deposits of Pag Island (SW Croatia): Palaeovegetation and environmental changes in the Dinaride Lake System. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280, 193-206.	2.3	34
135	Quantifying Arabia–Eurasia convergence accommodated in the Greater Caucasus by paleomagnetic reconstruction. Earth and Planetary Science Letters, 2018, 482, 454-469.	4.4	34
136	Paleomagnetism of the Central Iberian curve's putative hinge: Too many oroclines in the Iberian Variscides. Gondwana Research, 2016, 39, 96-113.	6.0	33
137	Integrated bio-magnetostratigraphy of the Badenian reference section Ugljevik in southern Pannonian Basin - implications for the Paratethys history (middle Miocene, Central Europe). Global and Planetary Change, 2019, 172, 374-395.	3.5	32
138	Sedimentary architecture and depositional controls of a Pliocene river-dominated delta in the semi-isolated Dacian Basin, Black Sea. Sedimentary Geology, 2018, 368, 1-23.	2.1	31
139	Source to sink transport in the Oligocene Huagang Formation of the Xihu Depression, East China Sea Shelf Basin. Marine and Petroleum Geology, 2018, 98, 733-745.	3.3	30
140	Recurrent phases of drought in the upper Miocene of the Black Sea region. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 423, 18-31.	2.3	29
141	DATING BORNEO'S DELTAIC DELUGE: MIDDLE MIOCENE PROGRADATION OF THE MAHAKAM DELTA. Palaios, 2015, 30, 7-25.	1.3	28
142	Paleomagnetic constraints on the early Miocene closure of the southern Neo-Tethys (Van region; East) Tj ETQqO 185, 103089.	0 0 rgBT 3.5	Overlock 10 28
143	Integrated quantitative biostratigraphy of the latest Tortonian–early Messinian Pissouri section (Cyprus): An evaluation of calcareous plankton bioevents. Geobios, 2007, 40, 267-279.	1.4	27
144	Age refinement and basin evolution of the North Rifian Corridor (Morocco): No evidence for a marine connection during the Messinian Salinity Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485, 416-432.	2.3	27

#	Article	IF	CITATIONS
145	Pollen record and integrated high-resolution chronology of the early Pliocene Dacic Basin (southwestern Romania). Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 238, 78-90.	2.3	26
146	New 40Ar/39Ar, magnetostratigraphic and biostratigraphic constraints on the termination of the Badenian Salinity Crisis: Indications for tectonic improvement of basin interconnectivity in Southern Europe. Global and Planetary Change, 2018, 169, 1-15.	3.5	26
147	Paratethys pacing of the Messinian Salinity Crisis: Low salinity waters contributing to gypsum precipitation?. Earth and Planetary Science Letters, 2020, 532, 116029.	4.4	26
148	The shutdown of an anoxic giant: Magnetostratigraphic dating of the end of the Maikop Sea. Gondwana Research, 2019, 67, 82-100.	6.0	25
149	Rock-magnetic properties of multicomponent natural remanent magnetization in alluvial red beds (NE) Tj ETQq1 1	0.78431 2.4	4.rgBT /Ovi
150	Timing of Late Pliocene to Middle Pleistocene tectonic events in Rhodes (Greece) inferred from magneto-biostratigraphy and 40Ar/39Ar dating of a volcaniclastic layer. Earth and Planetary Science Letters, 2006, 250, 281-291.	4.4	24
151	The quest for chron E23r at Partridge Island, Bay of Fundy, Canada: CAMP emplacement postdates the end-Triassic extinction event at the North American craton. Canadian Journal of Earth Sciences, 2011, 48, 1282-1291.	1.3	24
152	Miocene connectivity between the Central and Eastern Paratethys: Constraints from the western Dacian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 412, 45-67.	2.3	24
153	The Slanicul de Buzau section, a unit stratotype for the Romanian stage of the Dacian Basin (Plio-Pleistocene, Eastern Paratethys). Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440, 594-613.	2.3	24
154	Flooding of the Caspian Sea at the intensification of Northern Hemisphere Glaciations. Global and Planetary Change, 2019, 174, 153-163.	3.5	24
155	Productivity-climate coupling recorded in Pleistocene sediments off Prydz Bay (East Antarctica). Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485, 260-270.	2.3	23
156	Age and evolution of the Serbian Lake System: integrated results from Middle Miocene Lake Popovac. Newsletters on Stratigraphy, 2018, 51, 117-143.	1.2	23
157	Updated chronology for Middle to Late Miocene mammal sites of the Daroca area (Calatayud-Montalbán Basin, Spain). Geobios, 2014, 47, 325-334.	1.4	22
158	Asian monsoon modulation of nonsteady state diagenesis in hemipelagic marine sediments offshore of <scp>J</scp> apan. Geochemistry, Geophysics, Geosystems, 2016, 17, 4383-4398.	2.5	22
159	Late Burdigalian sea retreat from the North Alpine Foreland Basin: new magnetostratigraphic age constraints. Global and Planetary Change, 2017, 152, 38-50.	3.5	22
160	CFLab: A MATLAB GUI program for decomposing sediment grain size distribution using Weibull functions. Sedimentary Geology, 2020, 398, 105590.	2.1	22
161	Exploring a link between the Middle Eocene Climatic Optimum and Neotethys continental arc flare-up. Climate of the Past, 2021, 17, 229-239.	3.4	22

162 Revised isotopic (40Ar/39Ar) age for the lamproite volcano of Cabezos Negros, Fortuna Basin (Eastern) Tj ETQq0 0.0 rgBT /Overlock 10 2.3

#	Article	IF	CITATIONS
163	Astronomical tuning for the upper Messinian Spanish Atlantic margin: Disentangling basin evolution, climate cyclicity and MOW. Global and Planetary Change, 2015, 135, 89-103.	3.5	20
164	Migration of the dinoflagellate Galeacysta etrusca and its implications for the Messinian Salinity Crisis. Newsletters on Stratigraphy, 2018, 51, 73-91.	1.2	20
165	Mantle resistance against Gibraltar slab dragging as a key cause of the Messinian Salinity Crisis. Terra Nova, 2020, 32, 141-150.	2.1	20
166	Title is missing!. Studia Geophysica Et Geodaetica, 2003, 47, 255-274.	0.5	19
167	Provenance analysis as a key to orogenic exhumation: a case study from the East Carpathians (Romania). Terra Nova, 2007, 19, 120-126.	2.1	19
168	Tracking provenance change during the late Miocene in the eastern Mediterranean using geochemical and environmental magnetic parameters. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	19
169	The continental Permian–Triassic boundary in the Netherlands: Implications for the geomagnetic polarity time scale. Earth and Planetary Science Letters, 2012, 317-318, 165-176.	4.4	19
170	Magneto-biostratigraphic age constraints on the palaeoenvironmental evolution of the South Caspian basin during the Early-Middle Pleistocene (Kura basin, Azerbaijan). Quaternary Science Reviews, 2019, 222, 105895.	3.0	19
171	The sensitivity of middle Miocene paleoenvironments to changing marine gateways in Central Europe. Geology, 2019, 47, 35-38.	4.4	19
172	Astronomical forcing of the Paleogene coal-bearing hydrocarbon source rocks of the East China Sea Shelf Basin. Sedimentary Geology, 2020, 406, 105715.	2.1	19
173	Timing and distribution of tectonic rotations in the northeastern Tibetan Plateau. , 2008, , .		19
174	A Greigite-Based Magnetostratigraphic Time Frame for the Late Miocene to Recent DSDP Leg 42B Cores from the Black Sea. Frontiers in Earth Science, 2016, 4, .	1.8	18
175	Magnetostratigraphy and small mammals of the Late Oligocene Banovići basin in NE Bosnia and Herzegovina. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 310, 400-412.	2.3	17
176	Late Quaternary Deep Stratification limate Coupling in the Southern Ocean: Implications for Changes in Abyssal Carbon Storage. Geochemistry, Geophysics, Geosystems, 2018, 19, 379-395.	2.5	17
177	New age constraints on the western Betic intramontane basins: A late Tortonian closure of the Guadalhorce Corridor?. Terra Nova, 2018, 30, 325-332.	2.1	17
178	Changing seas in the late Miocene Northern Aegean: A Paratethyan approach to Mediterranean basin evolution. Earth-Science Reviews, 2020, 210, 103386.	9.1	17
179	From Khersonian drying to Pontian "floodingâ€i late Miocene stratigraphy and palaeoenvironmental evolution of the Dacian Basin (Eastern Paratethys). Global and Planetary Change, 2020, 192, 103224.	3.5	17
180	Late Miocene paleoenvironmental changes in North Africa and the Mediterranean recorded by geochemical proxies (Monte Gibliscemi section, Sicily). Palaeogeography, Palaeoclimatology, Palaeogeography, 2010, 285, 66-73.	2.3	16

#	Article	IF	CITATIONS
181	Integrated stratigraphy of the Priabonian (upper Eocene) Urtsadzor section, Armenia. Newsletters on Stratigraphy, 2017, 50, 269-295.	1.2	16
182	AGE AND MODE OF THE MIDDLE MIOCENE MARINE FLOODING OF THE PANNONIAN BASINâ€"CONSTRAINTS FROM CENTRAL SERBIA. Palaios, 2019, 34, 71-95.	1.3	16
183	Imprint of Messinian Salinity Crisis events on the Spanish Atlantic margin. Newsletters on Stratigraphy, 2018, 51, 93-115.	1.2	16
184	Impact of the Mediterranean-Atlantic connectivity and the late Miocene carbon shift on deep-sea communities in the Western Alboran Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 589, 110841.	2.3	16
185	Cyclicity and NRM acquisition in the armantes section (Miocene, Spain): Potential for an astronomical polarity time scale for the continental record. Geophysical Research Letters, 1997, 24, 1027-1030.	4.0	15
186	The mid-Langhian flooding in the eastern Central Paratethys: integrated stratigraphic data from the Transylvanian Basin and SE Carpathian Foredeep. International Journal of Earth Sciences, 2019, 108, 2209-2232.	1.8	15
187	Magneto-biostratigraphy and paleoenvironments of the Miocene freshwater sediments of the Sarajevo-Zenica Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 506, 48-69.	2.3	14
188	Five-fold expansion of the Caspian Sea in the late Pliocene: New and revised magnetostratigraphic and 40Ar/39Ar age constraints on the Akchagylian Stage. Global and Planetary Change, 2021, 206, 103624.	3.5	14
189	Cyclostratigraphy and rock-magnetic investigation of the NRM signal in late Miocene palustrine-alluvial deposits of the Librilla section (SE Spain). Journal of Geophysical Research, 2002, 107, EPM 3-1-EPM 3-18.	3.3	13
190	Chronostratigraphy of uplifted Quaternary hemipelagic deposits from the Dodecanese island of Rhodes (Greece). Quaternary Research, 2016, 86, 79-94.	1.7	13
191	Contribution to the magnetostratigraphy of the Carnian: new magneto-biostratigraphic constraints from Pignola-2 and Dibona marine sections, Italy. Newsletters on Stratigraphy, 2017, 50, 187-203.	1.2	13
192	Subsidence, stress regime and rotation(s) of a tectonically active sedimentary basin within the western Alpine Orogen: the Tertiary Piedmont Basin (Alpine domain, NW Italy). Geological Society Special Publication, 2003, 208, 205-227.	1.3	12
193	The syn- and post-collisional evolution of the Romanian Carpathian foredeep: New constraints from anisotropy of magnetic susceptibility and paleostress analyses. Tectonophysics, 2009, 473, 457-465.	2.2	12
194	On the Late Miocene continentalization of the Guadix Basin: More evidence for a major Messinian hiatus. Geobios, 2012, 45, 617-620.	1.4	12
195	Early diagenetic greigite as an indicator of paleosalinity changes in the middle <scp>M</scp> iocene <scp>P</scp> aratethys <scp>S</scp> ea of central <scp>E</scp> urope. Geochemistry, Geophysics, Geosystems, 2017, 18, 2634-2645.	2.5	12
196	A conservation palaeobiological approach to assess faunal response of threatened biota under natural and anthropogenic environmental change. Biogeosciences, 2019, 16, 2423-2442.	3.3	12
197	Tangled up in folds: tectonic significance of superimposed folding at the core of the Central Iberian curve (West Iberia). International Geology Review, 2019, 61, 240-255.	2.1	12
198	High Mediterranean water-level during the Lago-Mare phase of the Messinian Salinity Crisis: insights from the Sr isotope records of Spanish marginal basins (SE Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562, 110139.	2.3	12

#	Article	IF	CITATIONS
199	Non-Uniform Occurrence of Short-Term Polarity Fluctuations in the Geomagnetic Field? New Results from Middle to Late Miocene Sediments of the North Atlantic (DSDP Site 608). Geophysical Monograph Series, 0, , 161-174.	0.1	11
200	Onset of Maikop sedimentation and cessation of Eocene arc volcanism in the Talysh Mountains, Azerbaijan. Geological Society Special Publication, 2017, 428, 145-169.	1.3	11
201	Clockwise rotations recorded in redbeds from the Jinggu Basin of northwestern Indochina. Bulletin of the Geological Society of America, 0, , B31637.1.	3.3	11
202	Milankovitch cycles in an equatorial delta from the Miocene of Borneo. Earth and Planetary Science Letters, 2017, 472, 229-240.	4.4	11
203	The Eocene-Oligocene transition in the North Alpine Foreland Basin and subsequent closure of a Paratethys gateway. Global and Planetary Change, 2018, 162, 101-119.	3.5	11
204	Lectostratotype of the Maikopian Group in the Belaya River Section Upstream of the Town of Maikop (Western Ciscaucasia) in the Oligocene Part. Stratigraphy and Geological Correlation, 2019, 27, 339-360.	0.8	11
205	Black Sea rivers capture significant change in catchment-wide mean annual temperature and soil pH during the Miocene-to-Pliocene transition. Global and Planetary Change, 2019, 172, 428-439.	3.5	11
206	Precessional Drivers of Late Miocene Mediterranean Sedimentary Sequences: African Summer Monsoon and Atlantic Winter Storm Tracks. Paleoceanography and Paleoclimatology, 2019, 34, 1980-1994.	2.9	10
207	Chronostratigraphy of uplifted Quaternary hemipelagic deposits from the Dodecanese island of Rhodes (Greece). Quaternary Research, 2016, 86, 79-94.	1.7	9
208	A Late Maeotian age (6.7–6.3†Ma) for the enigmatic "Pebbly Breccia―unit in DSDP Hole 380A of the Bla Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 533, 109269.	ack 2.3	9
209	Late Quaternary dynamics of the Lambert Glacier-Amery Ice Shelf system, East Antarctica. Quaternary Science Reviews, 2021, 252, 106738.	3.0	9
210	Paleomagnetism in Lake Pannon: Problems, Pitfalls, and Progress in Using Iron Sulfides for Magnetostratigraphy. Geochemistry, Geophysics, Geosystems, 2018, 19, 3405-3429.	2.5	8
211	Deciphering Color Reflectance Data of a 520â€kyr Sediment Core From the Southern Ocean: Method Application and Paleoenvironmental Implications. Geochemistry, Geophysics, Geosystems, 2019, 20, 2808-2826.	2.5	8
212	Climate-driven connectivity changes of the Black Sea since 430Âka: Testing a dual palynological and geochemical approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 561, 110069.	2.3	8
213	Severe late Miocene droughts affected western Eurasia. Global and Planetary Change, 2021, 206, 103644.	3.5	8
214	Towards a high-resolution chronostratigraphy and geochronology for the Pannonian Stage: Significance of the Paks cores (Central Pannonian Basin). Földtani Közlöny, 2019, 149, 351.	0.4	8
215	Integrated stratigraphy of the Eocene-Oligocene deposits of the northern Caucasus (Belaya River,) Tj ETQq1 1 0. Palaeoclimatology, Palaeoecology, 2019, 536, 109395.	784314 rg 2.3	BT /Overlock 7
216	Post-Eocene coupled oroclines in the Talesh (NW Iran): Paleomagnetic constraints. Tectonophysics, 2020, 786, 228459.	2.2	7

#	Article	IF	CITATIONS
217	Paleomagnetic analyses on Badenian–Sarmatian drill cores from the North Carpathian Foredeep (Middle Miocene, Poland). Biuletyn - Panstwowego Instytutu Geologicznego, 2015, 461, 179-192.	0.1	7
218	The dire straits of Paratethys: gateways to the anoxic giant of Eurasia. Geological Society Special Publication, 2023, 523, 111-139.	1.3	7
219	Age and stratigraphic context of Pliopithecus and associated fauna from Miocene sedimentary strata at Damiao, Inner Mongolia, China. Journal of Asian Earth Sciences, 2015, 100, 78-90.	2.3	6
220	Amplitude, frequency and drivers of Caspian Sea lakeâ€level variations during the Early Pleistocene and their impact on a protected waveâ€dominated coastline. Sedimentology, 2020, 67, 649-676.	3.1	6
221	The myth of the Messinian Dardanelles: Late Miocene stratigraphy and palaeogeography of the ancient Aegean-Black Sea gateway. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560, 110033.	2.3	6
222	Avalonia, get bent! – Paleomagnetism from SW Iberia confirms the Greater Cantabrian Orocline. Geoscience Frontiers, 2021, 12, 805-825.	8.4	6
223	Palaeogeographic reconstructions of the Eocene-Oligocene Tarim Basin (NW China): Sedimentary response to late Eocene sea retreat. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 587, 110796.	2.3	6
224	Multi-proxy investigation of the post-evaporitic succession of the Piedmont Basin (Pollenzo section,) Tj ETQq0 0 Palaeoclimatology, Palaeoecology, 2022, 594, 110961.	0 rgBT /O [.] 2.3	verlock 10 Tf 6
225	Concurrent tectonic and climatic changes recorded in upper Tortonian sediments from the Eastern Mediterranean. Terra Nova, 2010, 22, 52-63.	2.1	5
226	Data on lithofacies, sedimentology and palaeontology of South Rifian Corridor sections (Morocco). Data in Brief, 2018, 19, 712-736.	1.0	5
227	Three-dimensional geological modeling supports a revised Burdigalian chronostratigraphy in the North Alpine Foreland Basin. International Journal of Earth Sciences, 2019, 108, 2627-2651.	1.8	5
228	Palaeomagnetic results from Upper Triassic red-beds and CAMP lavas of the Argana Basin, Morocco. Geological Society Special Publication, 2011, 357, 195-209.	1.3	4
229	Objective utilization of data from <scp>DSDP</scp> Site 380 (Black Sea). Terra Nova, 2016, 28, 230-231.	2.1	4
230	Longâ€eccentricity regulated climate control on fluvial incision and aggradation in the Palaeocene of northâ€eastern Montana (<scp>USA</scp>). Sedimentology, 2020, 67, 2529-2560.	3.1	4
231	Detrital zircon ages reveal Yangtze provenance since the early Oligocene in the East China Sea Shelf Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 577, 110548.	2.3	4
232	Hydrological Changes in Restricted Basins: Insights From Strontium Isotopes on Late Mioceneâ€Pliocene Connectivity of the Eastern Paratethys (Dacian Basin, Romania). Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009369.	2.5	3
233	Reply to "Comment on the Badenian–Sarmatian extinction event in the Carpathian foredeep basin of Romania: Paleogeographic changes in the Paratethys (Palcu et al., 2015)―by Silye and Filipescu (2016). Global and Planetary Change, 2016, 145, 141-142.	3.5	2
234	Reply to "Ceratolithus acutus Gartner and Bukry 1974 (= C. armatus Müller 1974), calcareous nannofossil marker of the marine flooding that terminated the Messinian salinity crisis―by Popescu et al., 2017. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511, 646.	2.3	2

#	Article	IF	CITATIONS
235	Geomagnetic Polarity Timescale. , 2001, , 25-32.		1
236	Litho- and biostratigraphic data of lower-middle Miocene sections in the Transylvanian basin and SE Carpathian Foredeep (Romania). Data in Brief, 2019, 24, 103904.	1.0	1
237	Biomarkers reveal two paramount Pliocene-Pleistocene connectivity events in the Caspian Sea Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 587, 110802.	2.3	1
238	Sediments, Terrestrial (Paleomagnetism). , 2014, , 1-12.		0
239	Sediments, Terrestrial (Paleomagnetism). Encyclopedia of Earth Sciences Series, 2015, , 752-760.	0.1	0
240	Dating, Magnetostratigraphy. Encyclopedia of Earth Sciences Series, 2009, , 252-255.	0.1	0