Rafik Tadros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3100178/publications.pdf Version: 2024-02-01

PAEIK TADDOS

#	Article	IF	CITATIONS
1	Chronically elevated branched chain amino acid levels are pro-arrhythmic. Cardiovascular Research, 2022, 118, 1742-1757.	1.8	24
2	Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies. Nature Reviews Cardiology, 2022, 19, 151-167.	6.1	50
3	Exploring the Relationship Between Schizophrenia and Cardiovascular Disease: A Genetic Correlation and Multivariable Mendelian Randomization Study. Schizophrenia Bulletin, 2022, 48, 463-473.	2.3	28
4	Return of Results Policies for Genomic Research: Current Practices and the Hearts in Rhythm Organization (HiRO) Approach. Canadian Journal of Cardiology, 2022, 38, 526-535.	0.8	3
5	Clinical and Functional Characterization of Ryanodine Receptor 2 Variants Implicated in Calcium-Release Deficiency Syndrome. JAMA Cardiology, 2022, 7, 84.	3.0	28
6	Unraveling the Genetic Substrate and Phenotypic Variability of Hypertrophic Cardiomyopathy: A Role for Desmosome Gene Variants?. Canadian Journal of Cardiology, 2022, 38, 3-5.	0.8	3
7	Predicting Sudden Cardiac Death in Genetic Heart Disease. Canadian Journal of Cardiology, 2022, 38, 479-490.	0.8	3
8	Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries. Circulation Research, 2022, 130, 166-180.	2.0	15
9	Cardiomyopathy Genes and Idiopathic VF: A Known Unknown?. Circulation Genomic and Precision Medicine, 2022, 15, CIRCGEN122003680.	1.6	1
10	Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nature Genetics, 2022, 54, 232-239.	9.4	55
11	Importance of genetic testing in unexplained cardiac arrest. European Heart Journal, 2022, 43, 3071-3081.	1.0	36
12	European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace, 2022, 24, 1307-1367.	0.7	108
13	European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm, 2022, 19, e1-e60.	0.3	78
14	European Heart Rhythm Association (<scp>EHRA</scp>)/Heart Rhythm Society (<scp>HRS</scp>)/Asia Pacific Heart Rhythm Society (<scp>APHRS</scp>)/Latin American Heart Rhythm Society (<scp>LAHRS</scp>) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Journal of Arrhythmia, 2022, 38, 491-553.	0.5	24
15	A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy. European Heart Journal, 2022, 43, e1-e9.	1.0	35
16	Latent Causes of Sudden CardiacÂArrest. JACC: Clinical Electrophysiology, 2022, 8, 806-821.	1.3	2
17	Arrhythmic risk prediction in arrhythmogenic right ventricular cardiomyopathy: external validation of the arrhythmogenic right ventricular cardiomyopathy risk calculator. European Heart Journal, 2022, 43, 3041-3052.	1.0	32
18	Sudden Cardiac Death Prediction in Arrhythmogenic Right Ventricular Cardiomyopathy. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e008509.	2.1	82

RAFIK TADROS

#	Article	IF	CITATIONS
19	Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls. Genetics in Medicine, 2021, 23, 47-58.	1.1	57
20	Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nature Genetics, 2021, 53, 135-142.	9.4	165
21	Role of Common Genetic Variation in Lone Atrial Fibrillation. Circulation Genomic and Precision Medicine, 2021, 14, e003179.	1.6	5
22	Short-coupled ventricular fibrillation represents a distinct phenotype among latent causes of unexplained cardiac arrest: a report from the CASPER registry. European Heart Journal, 2021, 42, 2827-2838.	1.0	54
23	Evaluating Polygenic Risk Scores in "Lone―Atrial Fibrillation. CJC Open, 2021, 3, 751-757.	0.7	5
24	Variant Reinterpretation in Survivors of Cardiac Arrest With Preserved Ejection Fraction (the Cardiac) Tj ETQq0 0 (Laboratories. Circulation Genomic and Precision Medicine, 2021, 14, e003235.) rgBT /Ov 1.6	verlock 10 Tf 10
25	Defining idiopathic ventricular fibrillation: A systematic review of diagnostic testing yield in apparently unexplained cardiac arrest. Heart Rhythm, 2021, 18, 1178-1185.	0.3	18
26	Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nature Genetics, 2021, 53, 128-134.	9.4	155
27	Genetic Testing in Inherited Arrhythmias: Approach, Limitations, and Challenges. Canadian Journal of Cardiology, 2020, 36, 584-587.	0.8	2
28	The yield of postmortem genetic testing in sudden death cases with structural findings at autopsy. European Journal of Human Genetics, 2020, 28, 17-22.	1.4	38
29	Missense variants in the spectrin repeat domain of DSP are associated with arrhythmogenic cardiomyopathy: A family report and systematic review. American Journal of Medical Genetics, Part A, 2020, 182, 2359-2368.	0.7	6
30	Novel Gain-of-Function Variant in <i>CACNA1C</i> Associated With Timothy Syndrome, Multiple Accessory Pathways, and Noncompaction Cardiomyopathy. Circulation Genomic and Precision Medicine, 2020, 13, e003123.	1.6	9
31	<i>SCN5A</i> Mutation Type and a Genetic Risk Score Associate Variably With Brugada Syndrome Phenotype in <i>SCN5A</i> Families. Circulation Genomic and Precision Medicine, 2020, 13, e002911.	1.6	41
32	When genetic burden reaches threshold. European Heart Journal, 2020, 41, 3849-3855.	1.0	40
33	Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation, 2020, 142, 324-338.	1.6	83
34	Infections Associated with Resterilized Pacemakers and Defibrillators. New England Journal of Medicine, 2020, 382, 1823-1831.	13.9	25
35	The Hearts in Rhythm Organization: A Canadian National Cardiogenetics Network. CJC Open, 2020, 2, 652-662.	0.7	14
36	Common and rare susceptibility genetic variants predisposing to Brugada syndrome in Thailand. Heart Rhythm, 2020, 17, 2145-2153.	0.3	23

RAFIK TADROS

#	Article	IF	CITATIONS
37	An International Multicenter Evaluation of Type 5 Long QT Syndrome. Circulation, 2020, 141, 429-439.	1.6	39
38	Guidance on Minimizing Risk of Drug-Induced Ventricular Arrhythmia During Treatment of COVID-19: A Statement from the Canadian Heart Rhythm Society. Canadian Journal of Cardiology, 2020, 36, 948-951.	0.8	100
39	Beyond the One Gene–One Disease Paradigm. Circulation, 2019, 140, 595-610.	1.6	101
40	Risk stratification for ventricular arrhythmias and sudden cardiac death in arrhythmogenic right ventricular cardiomyopathy: an update. Expert Review of Cardiovascular Therapy, 2019, 17, 645-651.	0.6	5
41	Predicting cardiac electrical response to sodium-channel blockade and Brugada syndrome using polygenic risk scores. European Heart Journal, 2019, 40, 3097-3107.	1.0	55
42	An integrated overview of AV node physiology. PACE - Pacing and Clinical Electrophysiology, 2019, 42, 805-820.	0.5	15
43	Blinded Randomized Trial of Anticoagulation to Prevent Ischemic Stroke and Neurocognitive Impairment in Atrial Fibrillation (BRAIN-AF): Methods and Design. Canadian Journal of Cardiology, 2019, 35, 1069-1077.	0.8	27
44	Pregnancy in Catecholaminergic Polymorphic Ventricular Tachycardia. JACC: Clinical Electrophysiology, 2019, 5, 387-394.	1.3	17
45	Challenge and Impact of Quinidine Access in Sudden Death Syndromes. JACC: Clinical Electrophysiology, 2019, 5, 376-382.	1.3	23
46	SCN5A mutation type and topology are associated with the risk of ventricular arrhythmia by sodium channel blockers. International Journal of Cardiology, 2018, 266, 128-132.	0.8	21
47	Quinidine effective for the management of ventricular and atrial arrhythmias associated with Brugada syndrome. HeartRhythm Case Reports, 2018, 4, 270-272.	0.2	3
48	Bioinformatic analysis of a plakophilin-2-dependent transcription network: implications for the mechanisms of arrhythmogenic right ventricular cardiomyopathy in humans and in boxer dogs. Europace, 2018, 20, iii125-iii132.	0.7	16
49	Early Repolarization Pattern Inheritance in the Cardiac Arrest Survivors With Preserved Ejection Fraction Registry (CASPER). JACC: Clinical Electrophysiology, 2018, 4, 1473-1479.	1.3	6
50	Mechanisms and Clinical Significance of Arrhythmia-Induced Cardiomyopathy. Canadian Journal of Cardiology, 2018, 34, 1449-1460.	0.8	30
51	Decreased Mortality With Beta-Blockers inÂPatients With Heart Failure and Coexisting Atrial Fibrillation. JACC: Heart Failure, 2017, 5, 99-106.	1.9	71
52	Utility of Post-Mortem Genetic Testing in Cases of Sudden Arrhythmic Death Syndrome. Journal of the American College of Cardiology, 2017, 69, 2134-2145.	1.2	219
53	The Brugada Syndrome Susceptibility Gene <i>HEY2</i> Modulates Cardiac Transmural Ion Channel Patterning and Electrical Heterogeneity. Circulation Research, 2017, 121, 537-548.	2.0	63
54	Genetic Testing in the Evaluation of Unexplained Cardiac Arrest. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	76

RAFIK TADROS

#	Article	IF	CITATIONS
55	Exome sequencing identifies primary carnitine deficiency in a family with cardiomyopathy and sudden death. European Journal of Human Genetics, 2017, 25, 783-787.	1.4	21
56	Familial Disease Is Not Always Genetic: A Family With Atrioventricular Block and Mitral Regurgitation. Canadian Journal of Cardiology, 2017, 33, 554.e9-554.e11.	0.8	0
57	Revisiting the sensitivity of sodium channel blocker testing in Brugada syndrome using obligate transmittance. International Journal of Cardiology, 2017, 245, 183-184.	0.8	4
58	Dissecting the Genetic Basis of the ECG as a Means of Understanding Mechanisms of Arrhythmia. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	2
59	Risk of arrhythmic events in drug-induced Brugada syndrome. Heart Rhythm, 2017, 14, 1434-1435.	0.3	6
60	Yield and Pitfalls of Ajmaline Testing in theÂEvaluation of Unexplained Cardiac Arrest and Sudden Unexplained Death. JACC: Clinical Electrophysiology, 2017, 3, 1400-1408.	1.3	34
61	<i><scp>TECRL</scp></i> , a new lifeâ€threatening inherited arrhythmia gene associated with overlapping clinical features of both <scp>LQTS</scp> and <scp>CPVT</scp> . EMBO Molecular Medicine, 2016, 8, 1390-1408.	3.3	98
62	Dronedarone. Cardiac Electrophysiology Clinics, 2016, 8, 453-465.	0.7	13
63	Predictors of Ventricular Arrhythmias and Sudden Death in a Québec Cohort With Brugada Syndrome. Canadian Journal of Cardiology, 2016, 32, 1355.e1-1355.e7.	0.8	19
64	Pharmacotherapy for inherited arrhythmia syndromes: mechanistic basis, clinical trial evidence and practical application. Expert Review of Cardiovascular Therapy, 2015, 13, 769-782.	0.6	5
65	Nonsense Mutations in BAC3 are Associated With Early-Onset Dilated Cardiomyopathy in French Canadians. Canadian Journal of Cardiology, 2014, 30, 1655-1661.	0.8	57
66	Atrial fibrillation in heart failure: drug therapies for rate and rhythm control. Heart Failure Reviews, 2014, 19, 315-324.	1.7	11
67	Sex Differences in Cardiac Electrophysiology and Clinical Arrhythmias: Epidemiology, Therapeutics, and Mechanisms. Canadian Journal of Cardiology, 2014, 30, 783-792.	0.8	109
68	Integrated rate-dependent and dual pathway AV nodal functions: principles and assessment framework. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H173-H183.	1.5	13
69	Rateâ€Dependent AV Nodal Function: Closely Bound Conduction and Refractory Properties. Journal of Cardiovascular Electrophysiology, 2012, 23, 302-308.	0.8	5
70	Rate-dependent AV nodal refractoriness: a new functional framework based on concurrent effects of basic and pretest cycle length. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H2136-H2143.	1.5	7
71	Dependence of AV Nodal Function Curves on the Selected Recovery Index: Pivotal Role of Pretest Conduction Time. Journal of Cardiovascular Electrophysiology, 2007, 18, 978-984.	0.8	5
72	Unified rate-dependent atrioventricular nodal function: Consistent recovery and fatigue properties revealed with S1S2S3 protocols and different recovery indexes. Heart Rhythm, 2006, 3, 959-966.	0.3	7

#	Article	IF	CITATIONS
73	Role of Compact Node and Posterior Extension in Direction-Dependent Changes in Atrioventricular Nodal Function in Rabbit. Journal of Cardiovascular Electrophysiology, 2003, 14, 1342-1350.	0.8	28