
Zhaofu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3099837/publications.pdf Version: 2024-02-01

ΖΗΛΟΕΊ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Quasi-square-shaped cadmium hydroxide nanocatalysts for electrochemical CO ₂ reduction with high efficiency. Chemical Science, 2021, 12, 11914-11920.	7.4	10
2	A depth-suitable and water-stable trap for CO2 capture. RSC Advances, 2021, 11, 15748-15752.	3.6	0
3	Fabrication of Superamphiphilic Carbon Using Lignosulfonate for Enhancing Selective Hydrogenation Reactions in Pickering Emulsions. ACS Applied Materials & Interfaces, 2021, 13, 25234-25240.	8.0	6
4	Production of Piperidine and δâ€Lactam Chemicals from Biomassâ€Derived Triacetic Acid Lactone. Angewandte Chemie, 2021, 133, 14526-14530.	2.0	0
5	Production of Piperidine and δâ€Lactam Chemicals from Biomassâ€Derived Triacetic Acid Lactone. Angewandte Chemie - International Edition, 2021, 60, 14405-14409.	13.8	10
6	Support Effect of Ru Catalysts for Efficient Conversion of Biomass-Derived 2,5-Hexanedione to Different Products. ACS Catalysis, 2021, 11, 7685-7693.	11.2	22
7	Continuous-flow formic acid production from the hydrogenation of CO ₂ without any base. Green Chemistry, 2021, 23, 1978-1982.	9.0	17
8	Superamphiphilic carbon from sawdust activated by oxygen/argon mixtures promoting the oxidation of benzyl alcohol in Pickering emulsion. Green Chemistry, 2021, 23, 6341-6348.	9.0	2
9	Highly efficient Meerwein–Ponndorf–Verley reductions over a robust zirconium-organoboronic acid hybrid. Green Chemistry, 2021, 23, 1259-1265.	9.0	41
10	Synthesis of Bis(trimethylsilyl)acetylene (BTMSA) by Direct Reaction of CaC 2 with N â€(trimethylsilyl)imidazole. ChemistrySelect, 2020, 5, 3644-3646.	1.5	4
11	Driving dimethyl carbonate synthesis from CO ₂ and methanol and production of acetylene simultaneously using CaC ₂ . Chemical Communications, 2018, 54, 4410-4412.	4.1	29
12	Microwave assisted synthesis of glycerol carbonate from glycerol and urea. Pure and Applied Chemistry, 2018, 90, 1-6.	1.9	14
13	Synthesis of Asymmetrical Organic Carbonates using CO ₂ as a Feedstock in AgCl/Ionic Liquid System at Ambient Conditions. ChemSusChem, 2017, 10, 1292-1297.	6.8	42
14	Design of a Cu(<scp>i</scp>)/C-doped boron nitride electrocatalyst for efficient conversion of CO ₂ into acetic acid. Green Chemistry, 2017, 19, 2086-2091.	9.0	91
15	Efficient Hydrogenation of CO ₂ to Methanol over Supported Subnanometer Gold Catalysts at Low Temperature. ChemCatChem, 2017, 9, 3691-3696.	3.7	40
16	Molybdenum–Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol. Angewandte Chemie - International Edition, 2016, 55, 6771-6775.	13.8	225
17	Synthesis of Supported Ultrafine Nonâ€noble Subnanometer‣cale Metal Particles Derived from Metal–Organic Frameworks as Highly Efficient Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2016, 55, 1080-1084.	13.8	69
18	Synthesis of Supported Ultrafine Nonâ€noble Subnanometerâ€6cale Metal Particles Derived from Metal–Organic Frameworks as Highly Efficient Heterogeneous Catalysts. Angewandte Chemie, 2016, 128, 1092-1096.	2.0	15

ZHAOFU ZHANG

#	Article	IF	CITATIONS
19	Molybdenum–Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol. Angewandte Chemie, 2016, 128, 6883-6887.	2.0	55
20	Bromide promoted hydrogenation of CO ₂ to higher alcohols using Ru–Co homogeneous catalyst. Chemical Science, 2016, 7, 5200-5205.	7.4	54
21	Poly(ethylene glycol) based bis-diol as a functional medium for highly efficient conversion of urea and methanol to dimethyl carbonate. Green Chemistry, 2016, 18, 798-801.	9.0	9
22	Synthesis of higher alcohols from CO ₂ hydrogenation over a PtRu/Fe ₂ O ₃ catalyst under supercritical condition. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20150006.	3.4	15
23	Highly selective hydrogenation of CO ₂ into C ₂₊ alcohols by homogeneous catalysis. Chemical Science, 2015, 6, 5685-5689.	7.4	72
24	A strategy to overcome the thermodynamic limitation in CO ₂ conversion using ionic liquids and urea. Green Chemistry, 2015, 17, 1633-1639.	9.0	25
25	A route to convert CO ₂ : synthesis of 3,4,5-trisubstituted oxazolones. Green Chemistry, 2015, 17, 1219-1225.	9.0	54
26	Highly efficient hydrogenation of carbon dioxide to methyl formate over supported gold catalysts. Green Chemistry, 2015, 17, 1467-1472.	9.0	43
27	Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO ₂ using ionic liquids as a dual solvent–catalyst at atmospheric pressure. Green Chemistry, 2014, 16, 221-225.	9.0	118
28	Choline hydroxide promoted chemical fixation of CO ₂ to quinazoline-2,4(1H,3H)-diones in water. RSC Advances, 2014, 4, 50993-50997.	3.6	34
29	Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 and 2-aminobenzonitriles in water without any catalyst. Green Chemistry, 2013, 15, 1485.	9.0	87
30	Effective synthesis of cyclic carbonates from CO2 and epoxides catalyzed by KI/cucurbit[6]uril. Pure and Applied Chemistry, 2013, 85, 1633-1641.	1.9	28
31	Ru–Zn supported on hydroxyapatite as an effective catalyst for partial hydrogenation of benzene. Green Chemistry, 2013, 15, 152-159.	9.0	84
32	Elimination of the negative effect of nitrogen compounds by CO2–water in the hydrocracking of anthracene. Green Chemistry, 2012, 14, 1854.	9.0	8
33	The catalytic mechanism of KI and the co-catalytic mechanism of hydroxyl substances for cycloaddition of CO2 with propylene oxide. Green Chemistry, 2012, 14, 2410.	9.0	149
34	Water as an additive to enhance the ring opening of naphthalene. Green Chemistry, 2012, 14, 1152.	9.0	21
35	One-pot conversion of CO2 and glycerol to value-added products using propylene oxide as the coupling agent. Green Chemistry, 2012, 14, 1743.	9.0	98
36	Synthesis of unsymmetrical organic carbonates catalyzed by a sulfonic acid-functionalized zirconium phosphonate. Pure and Applied Chemistry, 2011, 84, 675-684.	1.9	5

ZHAOFU ZHANG

#	Article	IF	CITATIONS
37	Hydrogenation of methyl laurate to produce lauryl alcohol over Cu/ZnO/Al2O3 with methanol as the solvent and hydrogen source. Pure and Applied Chemistry, 2011, 84, 779-788.	1.9	13
38	Immobilization of Pdnanoparticles with functional ionic liquid grafted onto cross-linked polymer for solvent-free Heck reaction. Green Chemistry, 2010, 12, 65-69.	9.0	126
39	Effect of CO2 on conversion of inulin to 5-hydroxymethylfurfural and propylene oxide to 1,2-propanediol in water. Green Chemistry, 2010, 12, 1215.	9.0	60
40	Hydrogenation of CO ₂ to Formic Acid Promoted by a Diamineâ€Functionalized Ionic Liquid. ChemSusChem, 2009, 2, 234-238.	6.8	137
41	Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chemistry, 2009, 11, 1746.	9.0	442
42	Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids. Green Chemistry, 2009, 11, 873.	9.0	187
43	MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chemistry, 2009, 11, 1031.	9.0	427
44	Hydrogenation of Carbon Dioxide is Promoted by a Taskâ€Specific Ionic Liquid. Angewandte Chemie - International Edition, 2008, 47, 1127-1129.	13.8	269
45	Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials. Green Chemistry, 2008, 10, 1280.	9.0	306
46	Synthesis of cyclic carbonates from epoxides and CO2 catalyzed by potassium halide in the presence of \hat{l}^2 -cyclodextrin. Green Chemistry, 2008, 10, 1337.	9.0	179
47	Switching the basicity of ionic liquids by CO2. Green Chemistry, 2008, 10, 1142.	9.0	93
48	Aerobic oxidation of benzyl alcohol in supercritical CO2 catalyzed by perruthenate immobilized on polymer supported ionic liquid. Green Chemistry, 2008, 10, 278.	9.0	46
49	Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters. Green Chemistry, 2008, 10, 879.	9.0	242
50	Ionic Liquid-Assisted Immobilization of Rh on Attapulgite and Its Application in Cyclohexene Hydrogenation. Journal of Physical Chemistry C, 2007, 111, 2185-2190.	3.1	79
51	Phase Behavior, Densities, and Isothermal Compressibility of the CO2+ Ethanol + Dichloromethane Ternary System in Different Phase Regions. Journal of Chemical & Engineering Data, 2005, 50, 1153-1156.	1.9	7
52	A green and effective method to synthesize ionic liquids: supercritical CO2 route. Green Chemistry, 2005, 7, 701.	9.0	64
53	Phase Separation of the Reaction System Induced by CO2and Conversion Enhancement for the Esterification of Acetic Acid with Ethanol in Ionic Liquid. Journal of Physical Chemistry B, 2005, 109, 16176-16179.	2.6	41
54	Tri-phase behavior of ionic liquid–water–CO2system at elevated pressures. Physical Chemistry Chemical Physics, 2004, 6, 5051-5055.	2.8	55

#	Article	IF	CITATIONS
55	A study of tri-phasic behavior of ionic liquid–methanol–CO2systems at elevated pressures. Physical Chemistry Chemical Physics, 2004, 6, 2352-2357.	2.8	49