Andrey Smolobochkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3099583/publications.pdf

Version: 2024-02-01

75 papers

442 citations

759190 12 h-index 17 g-index

78 all docs 78 docs citations

times ranked

78

162 citing authors

#	Article	IF	CITATIONS
1	Interaction of 2-Naphthol with \hat{I}^3 -Ureidoacetals. A New Method for the Synthesis of 2-Arylpyrrolidines. Chemistry of Heterocyclic Compounds, 2014, 50, 707-714.	1.2	30
2	Acid-catalyzed ring opening in 2-(2-hydroxynaphthalene-1-yl)-pyrrolidine-1-carboxamides: formation of dibenzoxanthenes, diarylmethanes, and calixarenes. Tetrahedron, 2015, 71, 445-450.	1.9	26
3	Facile synthesis of 2-(2-arylpyrrolidin-1-yl)pyrimidines via acid-catalyzed reaction of N-(4,4-diethoxybutyl)pyrimidin-2-amine with phenols. Monatshefte Für Chemie, 2015, 146, 1845-1849.	1.8	19
4	Synthesis of Novel 2-(Het)arylpyrrolidine Derivatives and Evaluation of Their Anticancer and Anti-Biofilm Activity. Molecules, 2019, 24, 3086.	3.8	19
5	Acid-Catalyzed Reaction of (4,4-Diethoxybutyl)ureas with Phenols as a Novel Approach to the Synthesis of $f(x) = 1215-1221$.	2.1	18
6	Ring opening reactions of nitrogen heterocycles. Russian Chemical Reviews, 2019, 88, 1104-1127.	6.5	18
7	New method of synthesis of 2-arylpyrrolidines: reaction of resorcinol and its derivatives with \hat{I}^3 -ureidoacetals. Arkivoc, 2014, 2014, 319-327.	0.5	16
8	Tandem intramolecular cyclisation/1,3-aryl shift in N-(4,4-diethoxybutyl)-1-arylmethanimines (Kazan) Tj ETQq0 0 0	O rgBT /O\	verlock 10 Tf 5
9	Synthesis of novel 2-arylpyrrolidines by the reaction of 1-(4,4-diethoxybutyl)urea with resorcinols. Russian Chemical Bulletin, 2014, 63, 284-285.	1.5	15
10	Nitrogen-containing acetals and ketals in the synthesis of pyrrolidine derivatives. Chemistry of Heterocyclic Compounds, 2016, 52, 753-765.	1.2	12
11	Reaction of N-cyclohexyl-2-(2-hydroxynaphthalen-1-yl)pyrrolidine-1-carboxamide with resorcinol and its derivatives and synthesis of polyphenols. Russian Chemical Bulletin, 2016, 65, 1377-1379.	1.5	12
12	Acid-catalyzed intramolecular cyclization of $\langle i \rangle N \langle i \rangle - (4,4-diethoxybutyl)$ sulfonamides as a novel approach to the 1-sulfonyl-2-arylpyrrolidines. Synthetic Communications, 2017, 47, 44-52.	2.1	12
13	Synthesis of Phosphaproline Derivatives: A Short Overview. Synthesis, 2019, 51, 3397-3409.	2.3	12
14	Synthesis of functionalized diarylbutane derivatives by the reaction of 2-methylresorcinol with \hat{I}^3 -ureidoacetals. Russian Journal of General Chemistry, 2015, 85, 1779-1782.	0.8	11
15	Acid-Mediated C–N Bond Cleavage in 1-Sulfonylpyrrolidines: An Efficient Route towards Dibenzoxanthenes, Diarylmethanes, and Resorcinarenes. Synlett, 2018, 29, 467-472.	1.8	11
16	Advances in the synthesis of heterocycles bearing an endocyclic urea moiety. Russian Chemical Reviews, 2021, 90, 395-417.	6.5	11
17	Cyclization of 1-(4,4-diethoxybutyl)-3-arylureas: a case study. Monatshefte Für Chemie, 2018, 149, 535-541.	1.8	10
18	The Highly Regioselective Synthesis of Novel Imidazolidin-2-Ones via the Intramolecular Cyclization/Electrophilic Substitution of Urea Derivatives and the Evaluation of Their Anticancer Activity. Molecules, 2021, 26, 4432.	3.8	9

#	Article	lF	Citations
19	Synthesis of 2-arylpyrrolidine-1-carboxamides via acid-catalyzed reaction of (4,4-diethoxybutyl)ureas with 3-aminophenol. Monatshefte Für Chemie, 2017, 148, 1433-1438.	1.8	8
20	Acidâ€Catalyzed Intramolecular Imination / Nucleophilic Trapping of 4â€Aminobutanal Derivatives: Oneâ€Pot Access to 2â€(Pyrazolyl)pyrrolidines. European Journal of Organic Chemistry, 2019, 2019, 5709-5719.	2.4	8
21	Acidâ€Catalyzed Cascade Reaction of 4â€Aminobutanal Derivatives with (Hetero)aromatic Nucleophiles: A Versatile Oneâ€Pot Access to 2â€(Hetero)arylpyrrolidines ChemistrySelect, 2019, 4, 9322-9330.	1.5	8
22	Reaction of 1-aryl-3-(4,4-diethoxybutyl)ureas with phenols. Synthesis of 2-arylpyrrolidines. Russian Journal of Organic Chemistry, 2014, 50, 1809-1813.	0.8	7
23	Acid-catalyzed reaction of phenols with N-(4,4-diethoxybutyl)sulfonamides – a new method for the synthesis of 2-aryl-1-sulfonylpyrrolidines. Chemistry of Heterocyclic Compounds, 2017, 53, 161-166.	1.2	7
24	Convenient synthesis of 2-(het)arylpyrrolidines via stable 1-pyrrolinium salts. Tetrahedron, 2019, 75, 130681.	1.9	7
25	Synthesis and Evaluation of Waterâ€Soluble 2â€Arylâ€1â€Sulfonylpyrrolidine Derivatives as Bacterial Biofilm Formation Inhibitors. Chemistry and Biodiversity, 2019, 16, e1800490.	2.1	7
26	Nucleophilic Cyclization/Electrophilic Substitution of (2,2-Dialkoxyethyl)ureas: Highly Regioselective Access to Novel 4-(Het)arylimidazolidinones and Benzo[d][1,3]diazepinones. Synthesis, 2020, 52, 3263-3271.	2.3	7
27	Synthesis and Biological Evaluation of Taurineâ€Derived Diarylmethane and Dibenzoxanthene Derivatives as Possible Cytotoxic and Antimicrobial Agents. Chemistry and Biodiversity, 2022, 19, .	2.1	6
28	Reactions of naphtalene-2,7-diol with \hat{I}^3 -ureidoacetals. Synthesis of 2-arylpyrrolidines. Russian Journal of General Chemistry, 2014, 84, 1934-1937.	0.8	5
29	Interaction of $1,1\hat{a}\in^2$ -(hexane-1,6-diyl)bis[3-(4,4-diethoxybutyl)urea] with resorcinol derivatives. Synthesis of bisarylpyrrolidines. Russian Journal of General Chemistry, 2015, 85, 517-519.	0.8	5
30	Cyclization of 1-(4,4-diethoxybutyl)-3-aryl(thio)ureas to 2-arylpyrrolidines and 2,3´-bipyrrole derivatives. Russian Chemical Bulletin, 2016, 65, 731-734.	1.5	5
31	Synthesis of 2-Arylpyrrolidines by Reactions of 3-Arylidene-1-pyrrolines with Phenols. Russian Journal of General Chemistry, 2018, 88, 1934-1937.	0.8	5
32	Synthesis of 1-(2-aminoethylsulfonyl)-2-phosphorylpyrrolidines via consecutive Arbuzov and aza-Michael reactions and their antitumor activity. Mendeleev Communications, 2019, 29, 686-687.	1.6	5
33	Diastereoselective intramolecular cyclization/Povarov reaction cascade for the one-pot synthesis of polycyclic quinolines. Organic and Biomolecular Chemistry, 2022, 20, 5515-5519.	2.8	5
34	Synthesis of 1-(arenesulfonyl)-2-arylpyrrolidines by reaction of N-(4,4-diethoxybutyl)-4-methylbenzene-sulfonamide with phenols. Russian Journal of Organic Chemistry, 2016, 52, 1304-1307.	0.8	4
35	Synthesis of 1-(arylsulfonyl)pyrrolidines from phenols and 1-[(4-chlorophenyl)sulfonyl]-2-ethoxypyrrolidine. Russian Journal of Organic Chemistry, 2017, 53, 199-202.	0.8	3
36	Reaction of 9-[2-(1,3-dioxolan-2-yl)ethyl]-9H-purin-6-amine with phenols. Synthesis of diarylpropanes. Russian Journal of Organic Chemistry, 2017, 53, 96-98.	0.8	3

#	Article	IF	CITATIONS
37	Reaction of 4-Chloro-6-[1-(vinylsulfonyl)pyrrolidin-2-yl]benzene-1,3-diol with Some Amines. Russian Journal of General Chemistry, 2018, 88, 131-135.	0.8	3
38	Synthesis of (hetaryl)pyrrolidines (microreview). Chemistry of Heterocyclic Compounds, 2018, 54, 683-685.	1.2	3
39	Ureas bearing alkylaromatic moieties: their synthesis and biological activity. Russian Chemical Bulletin, 2019, 68, 662-670.	1.5	3
40	One-Pot Synthesis of Novel Dibenzoxanthenes, Diarylbutanes, and Calix[4]resorcinarenes via Consecutive Pyrrolidine Ring-Closure/Ring-Opening Reactions. Journal of Chemistry, 2019, 2019, 1-7.	1.9	3
41	Synthesis of 2-(Diphenylphosphoryl)pyrrolidine-1-carboxamides Based on the Reaction of 1-(4,4-Diethoxybutyl)ureas with Diphenyl Chlorophosphine. Russian Journal of General Chemistry, 2019, 89, 2143-2146.	0.8	3
42	N-Phosphorylated Pyrrolidines: An Overview of Synthetic Approaches. Synthesis, 2020, 52, 2162-2170.	2.3	3
43	Reaction of N-(4,4-Diethoxybutyl)phosphamides with Chloro(diphenyl)phosphine. Synthesis of 2-(Diphenylphosphoryl)pyrrolidines. Russian Journal of Organic Chemistry, 2020, 56, 1119-1121.	0.8	3
44	Synthesis of New \hat{l}_{\pm} -Aminophosphonates Based on Cyclohexylamine. Russian Journal of General Chemistry, 2020, 90, 1100-1103.	0.8	3
45	One-pot imination / Arbuzov reaction of 4-aminobutanal derivatives: Synthesis of 2-phosphorylpyrrolidines and evaluation of anticancer activity. Tetrahedron, 2020, 76, 131369.	1.9	3
46	Synthesis of 1-Sulfonylpyrrolidines via Cycloaddition Reactions. Current Organic Chemistry, 2018, 22, 2085-2094.	1.6	3
47	Highly Diastereoselective Synthesis of 2â€Arylpyrrolidine Derivatives via the Crystallizationâ€induced Diastereomer Transformation. Asian Journal of Organic Chemistry, 0, , .	2.7	3
48	Reaction of 4-chloro- and 4-bromobenzene-1,3-diols with 1-alkyl-3-(4,4-diethoxybutyl)ureas in the presence of trifluoroacetic acid. Russian Journal of Organic Chemistry, 2015, 51, 1261-1263.	0.8	2
49	Synthesis of new nucleoside analogs containing amino bisphosphonic groups. Russian Journal of Organic Chemistry, 2016, 52, 1335-1338.	0.8	2
50	Synthesis of 2-arylpyrrolidines by reaction of \hat{I}^3 -ureidoacetals with benzene-1,3,5-triol. Russian Journal of Organic Chemistry, 2016, 52, 538-540.	0.8	2
51	Synthesis of 1-sulfonyl-2-arylpyrrolidines via intramolecular cyclization/Mannich-type reaction cascade of <i>N</i> -(4,4-diethoxybutyl)sulfonamides. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 766-770.	1.6	2
52	Reactions of 1â€(3,3â€Diethoxypropyl)urea with Phenols: Synthesis of 1,6â€Disubstituted Tetrahydropyrimidineâ€2(1H)â€ones. ChemistrySelect, 2019, 4, 11038-11042.	1.5	2
53	Reaction of 3-(Arylmethylidene)-1-pyrrolines with Acetone. Synthesis of Norhygrine Derivatives. Russian Journal of Organic Chemistry, 2020, 56, 1115-1118.	0.8	2
54	2â€(Het)aryl―N â€phosphorylpyrrolidines via Cyclization of Phosphorus Acid Amides: A Regioselective Approach. ChemistrySelect, 2020, 5, 12045-12050.	1. 5	2

#	Article	IF	Citations
55	Synthesis of (E)-4-(4-chlorobenzylidene)-3,4-dihydro-2H-pyrrole-based pyrrolinium salts. Russian Chemical Bulletin, 2020, 69, 382-385.	1.5	2
56	Anticancer activity of new benzofuroxan–imidazolone hybrids. Mendeleev Communications, 2021, 31, 865-866.	1.6	2
57	Synthesis of new polyphenols containing sym-triazine fragment. Russian Journal of General Chemistry, 2016, 86, 761-763.	0.8	1
58	Synthesis of new phosphorylated analogs of nucleotides containing adenine and ethylidene-1,1-bisphosphoryl moieties. Russian Journal of General Chemistry, 2017, 87, 2119-2121.	0.8	1
59	Novel calix[4]resorcinols with sulfamide fragments in the lower rim. Russian Journal of General Chemistry, 2017, 87, 2107-2110.	0.8	1
60	Synthesis of Macroheterocycles by Reaction of N,N $\hat{a}\in^2$ -(1,4-Phenylene)bis[N $\hat{a}\in^2$ -(4,4-diethoxybutyl)urea] with Resorcinol and Its Derivatives. Russian Journal of Organic Chemistry, 2018, 54, 1432-1434.	0.8	1
61	Acid-Catalyzed Reaction of N-(4,4-Diethoxybutyl)ureas with Pyrazol-5-ones. Synthesis of 2-Pyrazolylpyrrolidines. Russian Journal of Organic Chemistry, 2018, 54, 506-508.	0.8	1
62	Synthesis of 2-(pyrrolidin-1-yl)pyrimidines by reactions of N-(4,4-diethoxybutyl)pyrimidin-2-amine with (hetero)aromatic C-nucleophiles. Chemistry of Heterocyclic Compounds, 2019, 55, 523-528.	1.2	1
63	Synthesis of Alkylphosphoryl-Containing 4(5)-Arylimidazolin-2-ones. Russian Journal of General Chemistry, 2019, 89, 1934-1938.	0.8	1
64	Reaction of Sesamol with N-(3,3-Diethoxypropyl)ureas. Synthesis of Diarylpropanes. Russian Journal of Organic Chemistry, 2019, 55, 373-376.	0.8	1
65	Norhygrine Alkaloid and Its Derivatives: Synthetic Approaches and Applications to the Natural Products Synthesis. Helvetica Chimica Acta, 2022, 105, .	1.6	1
66	Synthesis of substituted ureas possessing alkyl aromatic fragments via the reaction of 1-(3,3-diethoxypropyl)ureas with phenols. Synthetic Communications, 2018, 48, 2545-2552.	2.1	0
67	Synthesis of Adenines with a Phosphorus-Containing Group in the 9-Position. Russian Journal of Organic Chemistry, 2018, 54, 938-942.	0.8	0
68	Synthesis of 3-arylidenepyrrolidines (microreview). Chemistry of Heterocyclic Compounds, 2019, 55, 815-817.	1.2	0
69	Synthesis of New (2-Acetamido)phenylglyoxylamides Containing an Acetal Fragment. Russian Journal of Organic Chemistry, 2019, 55, 121-123.	0.8	0
70	New aminophosphonate derivatives on the basis of 1-vinylsulfonyl-2-arylpyrrolidine. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 321-322.	1.6	0
71	Acid-catalyzed reaction of 1 -(2,2-dimethoxyethyl)ureas with phenols as an effective approach to diarylethanes and dibenzoxanthenes. Arkivoc, 2020, 2019, 180-189.	0.5	0
72	Synthesis of novel macrocyclic and heterocyclic taurine derivatives based on the reaction of sodium 2-[(4,4-diethoxybutyl)amino]ethanesulfonate with phenols. Chemistry of Heterocyclic Compounds, 2020, 56, 888-891.	1.2	0

#	Article	IF	CITATIONS
73	Synthesis of Novel 2-Hetarylpyrrolidines via the Reaction of N-(4,4-diethoxybutyl)amidophosphates with C-nucleophiles. Chemistry of Heterocyclic Compounds, 2020, 56, 1363-1365.	1.2	О
74	Reactions of Aminoacetals with C-Nucleophiles as a New Method for the Synthesis of Di(het)arylmethane Derivatives with a Taurine Fragment. Russian Journal of General Chemistry, 2022, 92, 161-165.	0.8	0
75	Synthesis of substituted tetrahydropyrimidin-2-ones through nucleophilic cyclization / electrophilic substitution of 1-(3,3-diethoxypropyl)urea with C-nucleophiles. Tetrahedron, 2022, , 132874.	1.9	0