
Andrea Angeli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3099530/publications.pdf

Version: 2024-02-01

ANDREA ANCELL

#	Article	IF	CITATIONS
1	Carbonic Anhydrase Inhibitors Targeting Metabolism and Tumor Microenvironment. Metabolites, 2020, 10, 412.	1.3	116
2	New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors. Bioorganic Chemistry, 2018, 77, 411-419.	2.0	99
3	Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 561-580.	2.5	81
4	Discovery of New Selenoureido Analogues of 4-(4-Fluorophenylureido)benzenesulfonamide as Carbonic Anhydrase Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 963-968.	1.3	62
5	Synthesis of coumarin-sulfonamide derivatives and determination of their cytotoxicity, carbonic anhydrase inhibitory and molecular docking studies. European Journal of Medicinal Chemistry, 2019, 183, 111702.	2.6	59
6	Inhibitory effects and structural insights for a novel series of coumarin-based compounds that selectively target human CA IX and CA XII carbonic anhydrases. European Journal of Medicinal Chemistry, 2018, 143, 276-282.	2.6	58
7	Selenols: a new class of carbonic anhydrase inhibitors. Chemical Communications, 2019, 55, 648-651.	2.2	56
8	Synthesis and anti-inflammatory activity of sulfonamides and carboxylates incorporating trimellitimides: Dual cyclooxygenase/carbonic anhydrase inhibitory actions. Bioorganic Chemistry, 2019, 84, 260-268.	2.0	56
9	Synthesis of 4-(thiazol-2-ylamino)-benzenesulfonamides with carbonic anhydrase I, II and IX inhibitory activity and cytotoxic effects against breast cancer cell lines. Bioorganic and Medicinal Chemistry, 2016, 24, 3043-3051.	1.4	53
10	Discovery of Novel Nonsteroidal Anti-Inflammatory Drugs and Carbonic Anhydrase Inhibitors Hybrids (NSAIDs–CAIs) for the Management of Rheumatoid Arthritis. Journal of Medicinal Chemistry, 2018, 61, 4961-4977.	2.9	53
11	Microwave-assisted extraction, HPLC analysis, and inhibitory effects on carbonic anhydrase I, II, VA, and VII isoforms of 14 blueberry Italian cultivars. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 1-6.	2.5	51
12	Synthesis and carbonic anhydrase I, II, VII, and IX inhibition studies with a series of benzo[d]thiazole-5- and 6-sulfonamides. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1071-1078.	2.5	51
13	Bioactive isoflavones from Pueraria lobata root and starch: Different extraction techniques and carbonic anhydrase inhibition. Food and Chemical Toxicology, 2018, 112, 441-447.	1.8	50
14	Discovery of New Potential Antiâ€Infective Compounds Based on Carbonic Anhydrase Inhibitors by Rational Targetâ€Focused Repurposing Approaches. ChemMedChem, 2016, 11, 1904-1914.	1.6	49
15	Discovery of Benzenesulfonamides with Potent Human Carbonic Anhydrase Inhibitory and Effective Anticonvulsant Action: Design, Synthesis, and Pharmacological Assessment. Journal of Medicinal Chemistry, 2017, 60, 2456-2469.	2.9	49
16	Isatin: a privileged scaffold for the design of carbonic anhydrase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 68-73.	2.5	49
17	Synthesis, biological activity and multiscale molecular modeling studies of bis-coumarins as selective carbonic anhydrase IX and XII inhibitors with effective cytotoxicity against hepatocellular carcinoma. Bioorganic Chemistry, 2019, 87, 838-850.	2.0	49
18	Structural investigations on coumarins leading to chromeno[4,3-c]pyrazol-4-ones and pyrano[4,3-c]pyrazol-4-ones: New scaffolds for the design of the tumor-associated carbonic anhydrase isoforms IX and XII. European Journal of Medicinal Chemistry, 2018, 146, 47-59.	2.6	45

#	Article	IF	CITATIONS
19	Evaluation of selenide, diselenide and selenoheterocycle derivatives as carbonic anhydrase I, II, IV, VII and IX inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 2518-2523.	1.4	44
20	Synthesis of Novel Selenides Bearing Benzenesulfonamide Moieties as Carbonic Anhydrase I, II, IV, VII, and IX Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 1213-1217.	1.3	44
21	Anticancer effects of new dibenzenesulfonamides by inducing apoptosis and autophagy pathways and their carbonic anhydrase inhibitory effects on hCA I, hCA II, hCA IX, hCA XII isoenzymes. Bioorganic Chemistry, 2018, 78, 290-297.	2.0	44
22	Heterocyclic periphery in the design of carbonic anhydrase inhibitors: 1,2,4-Oxadiazol-5-yl benzenesulfonamides as potent and selective inhibitors of cytosolic hCA II and membrane-bound hCA IX isoforms. Bioorganic Chemistry, 2018, 76, 88-97.	2.0	44
23	Famotidine, an Antiulcer Agent, Strongly Inhibits <i>Helicobacter pylori</i> and Human Carbonic Anhydrases. ACS Medicinal Chemistry Letters, 2018, 9, 1035-1038.	1.3	44
24	Synthesis of novel acyl selenoureido benzensulfonamides as carbonic anhydrase I, II, VII and IX inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 3567-3573.	1.4	42
25	1,3-Dipolar Cycloaddition, HPLC Enantioseparation, and Docking Studies of Saccharin/Isoxazole and Saccharin/Isoxazoline Derivatives as Selective Carbonic Anhydrase IX and XII Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 2470-2488.	2.9	42
26	Synthesis of novel 4-functionalized 1,5-diaryl-1,2,3-triazoles containing benzenesulfonamide moiety as carbonic anhydrase I, II, IV and IX inhibitors. European Journal of Medicinal Chemistry, 2018, 150, 678-686.	2.6	41
27	First evaluation of organotellurium derivatives as carbonic anhydrase I, II, IV, VII and IX inhibitors. Bioorganic Chemistry, 2018, 76, 268-272.	2.0	41
28	Probing Molecular Interactions between Human Carbonic Anhydrases (hCAs) and a Novel Class of Benzenesulfonamides. Journal of Medicinal Chemistry, 2017, 60, 4316-4326.	2.9	40
29	Sulfur, selenium and tellurium containing amines act as effective carbonic anhydrase activators. Bioorganic Chemistry, 2019, 87, 516-522.	2.0	40
30	Inhibition of α-, β-, γ-, δ-, ζ- and Îclass carbonic anhydrases from bacteria, fungi, algae, diatoms and protozoans with famotidine. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 644-650.	2.5	40
31	Expanding the anticancer potential of 1,2,3-triazoles via simultaneously targeting Cyclooxygenase-2, 15-lipoxygenase and tumor-associated carbonic anhydrases. European Journal of Medicinal Chemistry, 2020, 200, 112439.	2.6	40
32	Heterocoumarins Are Selective Carbonic Anhydrase IX and XII Inhibitors with Cytotoxic Effects against Cancer Cells Lines. ACS Medicinal Chemistry Letters, 2018, 9, 947-951.	1.3	39
33	Design, synthesis and X-ray crystallography of selenides bearing benzenesulfonamide moiety with neuropathic pain modulating effects. European Journal of Medicinal Chemistry, 2018, 154, 210-219.	2.6	39
34	Targeting Tumor Associated Carbonic Anhydrases IX and XII: Highly Isozyme Selective Coumarin and Psoralen Inhibitors. ACS Medicinal Chemistry Letters, 2018, 9, 725-729.	1.3	39
35	Synthesis and Evaluation of Carbonic Anhydrase Inhibitors with Carbon Monoxide Releasing Properties for the Management of Rheumatoid Arthritis. Journal of Medicinal Chemistry, 2019, 62, 7233-7249.	2.9	39
36	Discovery of new organoselenium compounds as antileishmanial agents. Bioorganic Chemistry, 2019, 86, 339-345.	2.0	39

#	Article	IF	CITATIONS
37	Synthesis and biological evaluation of coumarin-1,3,4-oxadiazole hybrids as selective carbonic anhydrase IX and XII inhibitors. Bioorganic Chemistry, 2019, 87, 765-772.	2.0	38
38	Carbonic Anhydrases: Versatile and Useful Biocatalysts in Chemistry and Biochemistry. Catalysts, 2020, 10, 1008.	1.6	38
39	Sulfocoumarinâ€, Coumarinâ€, 4â€Sulfamoylphenylâ€Bearing Indazoleâ€3â€carboxamide Hybrids: Synthesis and Selective Inhibition of Tumorâ€Associated Carbonic Anhydrase Isozymes IX and XII. ChemMedChem, 2017, 12, 1578-1584.	1.6	36
40	Inhibition of the α-carbonic anhydrase from <i>Vibrio cholerae</i> with amides and sulfonamides incorporating imidazole moieties. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 798-804.	2.5	35
41	Synthesis of different thio-scaffolds bearing sulfonamide with subnanomolar carbonic anhydrase II and IX inhibitory properties and X-ray investigations for their inhibitory mechanism. Bioorganic Chemistry, 2018, 81, 642-648.	2.0	35
42	Selective Inhibition of Helicobacter pylori Carbonic Anhydrases by Carvacrol and Thymol Could Impair Biofilm Production and the Release of Outer Membrane Vesicles. International Journal of Molecular Sciences, 2021, 22, 11583.	1.8	35
43	Synthesis, biological evaluation and in silico modelling studies of 1,3,5-trisubstituted pyrazoles carrying benzenesulfonamide as potential anticancer agents and selective cancer-associated hCA IX isoenzyme inhibitors. Bioorganic Chemistry, 2019, 92, 103222.	2.0	34
44	Synthesis and carbonic anhydrase inhibition studies of sulfonamide based indole-1,2,3-triazole chalcone hybrids. Bioorganic Chemistry, 2020, 99, 103839.	2.0	34
45	Synthesis and biological evaluation of cyclic imides incorporating benzenesulfonamide moieties as carbonic anhydrase I, II, IV and IX inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 1666-1671.	1.4	33
46	Psychoactive substances belonging to the amphetamine class potently activate brain carbonic anhydrase isoforms VA, VB, VII, and XII. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1253-1259.	2.5	33
47	Carbonic anhydrase inhibitors based on sorafenib scaffold: Design, synthesis, crystallographic investigation and effects on primary breast cancer cells. European Journal of Medicinal Chemistry, 2019, 182, 111600.	2.6	33
48	1,2,4-Triazole-based anticonvulsant agents with additional ROS scavenging activity are effective in a model of pharmacoresistant epilepsy. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 993-1002.	2.5	33
49	Discovery of new 2, 5-disubstituted 1,3-selenazoles as selective human carbonic anhydrase IX inhibitors with potent anti-tumor activity. European Journal of Medicinal Chemistry, 2018, 157, 1214-1222.	2.6	32
50	Exploring structural properties of potent human carbonic anhydrase inhibitors bearing a 4-(cycloalkylamino-1-carbonyl)benzenesulfonamide moiety. European Journal of Medicinal Chemistry, 2019, 163, 443-452.	2.6	31
51	Activation of β- and γ-carbonic anhydrases from pathogenic bacteria with tripeptides. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 945-950.	2.5	30
52	Crystal structure and chemical inhibition of essential schistosome host-interactive virulence factor carbonic anhydrase SmCA. Communications Biology, 2019, 2, 333.	2.0	30
53	Comprehensive study on potent and selective carbonic anhydrase inhibitors: Synthesis, bioactivities and molecular modelling studies of 4-(3-(2-arylidenehydrazine-1-carbonyl)-5-(thiophen-2-yl)-1H-pyrazole-1-yl) benzenesulfonamides. European Iournal of Medicinal Chemistry. 2021, 217, 113351.	2.6	30
54	Design, synthesis and biological evaluation of coumarin-3-carboxamides as selective carbonic anhydrase IX and XII inhibitors. Bioorganic Chemistry, 2019, 86, 386-392.	2.0	29

#	Article	IF	CITATIONS
55	Azidothymidine "Clicked―into 1,2,3-Triazoles: First Report on Carbonic Anhydrase–Telomerase Dual-Hybrid Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 7392-7409.	2.9	29
56	Discovery of curcumin inspired sulfonamide derivatives as a new class of carbonic anhydrase isoforms I, II, IX, and XII inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1274-1281.	2.5	28
57	Synthesis, biological activity and multiscale molecular modeling studies for coumaryl-carboxamide derivatives as selective carbonic anhydrase IX inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1042-1052.	2.5	28
58	Direct and straightforward access to substituted alkyl selenols as novel carbonic anhydrase inhibitors. European Journal of Medicinal Chemistry, 2020, 185, 111811.	2.6	28
59	Chagas Disease: Perspectives on the Past and Present and Challenges in Drug Discovery. Molecules, 2020, 25, 5483.	1.7	28
60	Tellurides Bearing Sulfonamides as Novel Inhibitors of Leishmanial Carbonic Anhydrase with Potent Antileishmanial Activity. Journal of Medicinal Chemistry, 2020, 63, 4306-4314.	2.9	28
61	Perfluoroalkyl Substances of Significant Environmental Concern Can Strongly Inhibit Human Carbonic Anhydrase Isozymes. Analytical Chemistry, 2020, 92, 4614-4622.	3.2	28
62	<i>N</i> -Acylbenzenesulfonamide Dihydro-1,3,4-oxadiazole Hybrids: Seeking Selectivity toward Carbonic Anhydrase Isoforms. ACS Medicinal Chemistry Letters, 2017, 8, 792-796.	1.3	27
63	Discovery of Benzenesulfonamide Derivatives as Carbonic Anhydrase Inhibitors with Effective Anticonvulsant Action: Design, Synthesis, and Pharmacological Evaluation. Journal of Medicinal Chemistry, 2018, 61, 3151-3165.	2.9	27
64	Novel 2-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)-1-(1,3,5-triazin-2-ylamino)guanidine derivatives: Inhibition of human carbonic anhydrase cytosolic isozymes I and II and the transmembrane tumor-associated isozymes IX and XII, anticancer activity, and molecular modeling studies. European Journal of Medicinal Chemistry, 2018, 143, 1931-1941.	2.6	26
65	The first activation studies of the Îcarbonic anhydrase from the malaria parasite Plasmodium falciparum with amines and amino acids. Bioorganic Chemistry, 2018, 80, 94-98.	2.0	26
66	Synthesis and biological evaluation of some coumarin hybrids as selective carbonic anhydrase IX and XII inhibitors. Bioorganic Chemistry, 2020, 104, 104272.	2.0	26
67	Structural Basis of Nanomolar Inhibition of Tumor-Associated Carbonic Anhydrase IX: X-Ray Crystallographic and Inhibition Study of Lipophilic Inhibitors with Acetazolamide Backbone. Journal of Medicinal Chemistry, 2020, 63, 13064-13075.	2.9	26
68	Tail approach synthesis of novel benzenesulfonamides incorporating 1,3,4-oxadiazole hybrids as potent inhibitor of carbonic anhydrase I, II, IX, and XII isoenzymes. European Journal of Medicinal Chemistry, 2020, 193, 112219.	2.6	26
69	Novel sulfonamide-containing 2-indolinones that selectively inhibit tumor-associated alpha carbonic anhydrases. Bioorganic and Medicinal Chemistry, 2017, 25, 3714-3718.	1.4	25
70	Synthesis of novel tellurides bearing benzensulfonamide moiety as carbonic anhydrase inhibitors with antitumor activity. European Journal of Medicinal Chemistry, 2019, 181, 111586.	2.6	25
71	Prostaglandin receptor agonists as antiglaucoma agents (a patent review 2013 – 2018). Expert Opinion on Therapeutic Patents, 2019, 29, 793-803.	2.4	25
72	Benzensulfonamides bearing spyrohydantoin moieties act as potent inhibitors of human carbonic anhydrases II and VII and show neuropathic pain attenuating effects. European Journal of Medicinal Chemistry, 2019, 177, 188-197.	2.6	25

#	Article	IF	CITATIONS
73	Selenolesterase enzyme activity of carbonic anhydrases. Chemical Communications, 2020, 56, 4444-4447.	2.2	25
74	Pharmacological Inhibition of CA-IX Impairs Tumor Cell Proliferation, Migration and Invasiveness. International Journal of Molecular Sciences, 2020, 21, 2983.	1.8	25
75	3-Hydroxy-1 <i>H</i> -quinazoline-2,4-dione as a New Scaffold To Develop Potent and Selective Inhibitors of the Tumor-Associated Carbonic Anhydrases IX and XII. Journal of Medicinal Chemistry, 2017, 60, 6428-6439.	2.9	24
76	Design, synthesis and biological activity of selective hCAs inhibitors based on 2-(benzylsulfinyl)benzoic acid scaffold. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1400-1413.	2.5	24
77	Design, synthesis and biological evaluation of <i>N</i> -(5-methyl-isoxazol-3-yl/1,3,4-thiadiazol-2-yl)-4-(3-substitutedphenylureido) benzenesulfonamides as human carbonic anhydrase isoenzymes I, II, VII and XII inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry. 2016. 31. 174-179.	2.5	23
78	Synthesis and carbonic anhydrase inhibition of polycyclic imides incorporating N-benzenesulfonamide moieties. Bioorganic and Medicinal Chemistry, 2017, 25, 5373-5379.	1.4	23
79	Coumarins from <i>Magydaris pastinacea</i> as inhibitors of the tumour-associated carbonic anhydrases IX and XII: isolation, biological studies and in silico evaluation. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 539-548.	2.5	23
80	Chalcogenides-incorporating carbonic anhydrase inhibitors concomitantly reverted oxaliplatin-induced neuropathy and enhanced antiproliferative action. European Journal of Medicinal Chemistry, 2021, 225, 113793.	2.6	23
81	Acyl selenoureido benzensulfonamides show potent inhibitory activity against carbonic anhydrases from the pathogenic bacterium Vibrio cholerae. Bioorganic Chemistry, 2017, 75, 170-172.	2.0	21
82	The zinc – but not cadmium – containing ζ-carbonic from the diatom Thalassiosira weissflogii is potently activated by amines and amino acids. Bioorganic Chemistry, 2018, 80, 261-265.	2.0	21
83	Design, synthesis and biological evaluation of coumarin linked 1,2,4-oxadiazoles as selective carbonic anhydrase IX and XII inhibitors. Bioorganic Chemistry, 2020, 98, 103739.	2.0	21
84	Sulfonamide Inhibition Studies of an α-Carbonic Anhydrase from Schistosoma mansoni, a Platyhelminth Parasite Responsible for Schistosomiasis. International Journal of Molecular Sciences, 2020, 21, 1842.	1.8	21
85	Design, Synthesis, and X-ray of Selenides as New Class of Agents for Prevention of Diabetic Cerebrovascular Pathology. ACS Medicinal Chemistry Letters, 2018, 9, 462-467.	1.3	20
86	Synthesis carbonic anhydrase enzyme inhibition and antioxidant activity of novel benzothiazole derivatives incorporating glycine, methionine, alanine, and phenylalanine moieties. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 343-349.	2.5	20
87	Catechols: a new class of carbonic anhydrase inhibitors. Chemical Communications, 2020, 56, 13033-13036.	2.2	20
88	Activation studies of the α- and β-carbonic anhydrases from the pathogenic bacterium <i>Vibrio cholerae</i> with amines and amino acids. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 227-233.	2.5	19
89	The Î ³ -carbonic anhydrase from the pathogenic bacterium Vibrio cholerae is potently activated by amines and amino acids. Bioorganic Chemistry, 2018, 77, 1-5.	2.0	19
90	Novel thiazolidinone-containing compounds, without the well-known sulphonamide zinc-binding group acting as human carbonic anhydrase IX inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 1299-1308.	2.5	19

#	Article	IF	CITATIONS
91	Selenides bearing benzenesulfonamide show potent inhibition activity against carbonic anhydrases from pathogenic bacteria Vibrio cholerae and Burkholderia pseudomallei. Bioorganic Chemistry, 2018, 79, 319-322.	2.0	19
92	Novel sulfonamides incorporating 1,3,5-triazine and amino acid structural motifs as inhibitors of the physiological carbonic anhydrase isozymes I, II and IV and tumor-associated isozyme IX. Bioorganic Chemistry, 2018, 81, 241-252.	2.0	19
93	Inhibition of carbonic anhydrases by a substrate analog: benzyl carbamate directly coordinates the catalytic zinc ion mimicking bicarbonate binding. Chemical Communications, 2018, 54, 10312-10315.	2.2	19
94	Biochemical and structural characterisation of a protozoan beta-carbonic anhydrase from <i>Trichomonas vaginalis</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1292-1299.	2.5	19
95	Activation studies with amines and amino acids of the β-carbonic anhydrase from the pathogenic protozoan Leishmania donovani chagasi. Bioorganic Chemistry, 2018, 78, 406-410.	2.0	18
96	The first activation study of a δ-carbonic anhydrase: TweCAδ from the diatom <i>Thalassiosira weissflogii</i> is effectively activated by amines and amino acids. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 680-685.	2.5	18
97	Tuning the Dual Inhibition of Carbonic Anhydrase and Cyclooxygenase by Dihydrothiazole Benzensulfonamides. ACS Medicinal Chemistry Letters, 2018, 9, 1045-1050.	1.3	18
98	Polypharmacology of epacadostat: a potent and selective inhibitor of the tumor associated carbonic anhydrases IX and XII. Chemical Communications, 2019, 55, 5720-5723.	2.2	18
99	Sulfonamide Inhibition Profile of the \hat{l}^2 -Carbonic Anhydrase from Malassezia restricta, An Opportunistic Pathogen Triggering Scalp Conditions. Metabolites, 2020, 10, 39.	1.3	18
100	Selective inhibition of carbonic anhydrase IX and XII by coumarin and psoralen derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 685-692.	2.5	18
101	Five- and Six-Membered Nitrogen-Containing Compounds as Selective Carbonic Anhydrase Activators. Molecules, 2017, 22, 2178.	1.7	17
102	Unprotected primary sulfonamide group facilitates ring-forming cascade en route to polycyclic [1,4]oxazepine-based carbonic anhydrase inhibitors. Bioorganic Chemistry, 2018, 76, 140-146.	2.0	17
103	Discovery of potent anti-convulsant carbonic anhydrase inhibitors: Design, synthesis, inÂvitro and inÂvivo appraisal. European Journal of Medicinal Chemistry, 2018, 156, 430-443.	2.6	17
104	Synthesis and biological evaluation of novel 8-substituted quinoline-2-carboxamides as carbonic anhydrase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1172-1177.	2.5	17
105	Inhibition of bacterial α-, β- and γ-class carbonic anhydrases with selenazoles incorporating benzenesulfonamide moieties. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 244-249.	2.5	17
106	Benzylaminoethyureido-Tailed Benzenesulfonamides: Design, Synthesis, Kinetic and X-ray Investigations on Human Carbonic Anhydrases. International Journal of Molecular Sciences, 2020, 21, 2560.	1.8	17
107	Discovery of Potent Carbonic Anhydrase Inhibitors as Effective Anticonvulsant Agents: Drug Design, Synthesis, and In Vitro and In Vivo Investigations. Journal of Medicinal Chemistry, 2021, 64, 3100-3114.	2.9	17
108	Activation studies with amines and amino acids of the β-carbonic anhydrase encoded by the <i>Rv3273</i> gene from the pathogenic bacterium <i>Mycobacterium tuberculosis</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 364-369.	2.5	16

#	Article	IF	CITATIONS
109	Synthesis of a new series of 3-functionalised-1-phenyl-1,2,3-triazole sulfamoylbenzamides as carbonic anhydrase I, II, IV and IX inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1199-1209.	2.5	16
110	Response to Perspectives on the Classical Enzyme Carbonic Anhydrase and the Search for Inhibitors. Biophysical Journal, 2021, 120, 178-181.	0.2	16
111	Dual Carbonic Anhydrase IX/XII Inhibitors and Carbon Monoxide Releasing Molecules Modulate LPS-Mediated Inflammation in Mouse Macrophages. Antioxidants, 2021, 10, 56.	2.2	16
112	Discovering a new class of antifungal agents that selectively inhibits microbial carbonic anhydrases. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 1537-1544.	2.5	15
113	N-aryl-N'-ureido-O-sulfamates: Potent and selective inhibitors of the human Carbonic Anhydrase VII isoform with neuropathic pain relieving properties. Bioorganic Chemistry, 2019, 89, 103033.	2.0	15
114	Sulphonamide inhibition profile of <i>Staphylococcus aureus</i> \hat{l}^2 -carbonic anhydrase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1834-1839.	2.5	15
115	Activation Effects of Carnosine- and Histidine-Containing Dipeptides on Human Carbonic Anhydrases: A Comprehensive Study. International Journal of Molecular Sciences, 2020, 21, 1761.	1.8	15
116	Evaluation of Thio- and Seleno-Acetamides Bearing Benzenesulfonamide as Inhibitor of Carbonic Anhydrases from Different Pathogenic Bacteria. International Journal of Molecular Sciences, 2020, 21, 598.	1.8	15
117	Development of Thiazolidinones as Fungal Carbonic Anhydrase Inhibitors. International Journal of Molecular Sciences, 2020, 21, 2960.	1.8	15
118	Exploring of tumor-associated carbonic anhydrase isoenzyme IX and XII inhibitory effects and cytotoxicities of the novel N-aryl-1-(4-sulfamoylphenyl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamides. Bioorganic Chemistry, 2021, 115, 105194.	2.0	15
119	Discovery of 4-sulfamoyl-phenyl-β-lactams as a new class of potent carbonic anhydrase isoforms I, II, IV and VII inhibitors: The first example of subnanomolar CA IV inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 539-544.	1.4	14
120	Synthesis and Biological Evaluation of 4‣ulfamoylphenyl/Sulfocoumarin Carboxamides as Selective Inhibitors of Carbonic Anhydrase Isoforms hCA II, IX, and XII. ChemMedChem, 2018, 13, 1165-1171.	1.6	14
121	Syntesis of thio- and seleno-acetamides bearing benzenesulfonamide as potent inhibitors of human carbonic anhydrase II and XII. Bioorganic Chemistry, 2019, 89, 102984.	2.0	14
122	Novel insights on saccharin- and acesulfame-based carbonic anhydrase inhibitors: design, synthesis, modelling investigations and biological activity evaluation. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1891-1905.	2.5	14
123	New coumarin/sulfocoumarin linked phenylacrylamides as selective transmembrane carbonic anhydrase inhibitors: Synthesis and in-vitro biological evaluation. Bioorganic and Medicinal Chemistry, 2020, 28, 115586.	1.4	14
124	Synthesis and Biological Evaluation of Imidazo[2,1-b]Thiazole based Sulfonyl Piperazines as Novel Carbonic Anhydrase II Inhibitors. Metabolites, 2020, 10, 136.	1.3	14
125	Coumarinâ€Thiourea Hybrids Show Potent Carbonic Anhydrase IX and XIII Inhibitory Action. ChemMedChem, 2021, 16, 1252-1256.	1.6	14
126	Fibrate-based <i>N</i> -acylsulphonamides targeting carbonic anhydrases: synthesis, biochemical evaluation, and docking studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1051-1061.	2.5	13

#	Article	IF	CITATIONS
127	Novel 2-indolinones containing a sulfonamide moiety as selective inhibitors of <i>candida</i> β-carbonic anhydrase enzyme. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 528-531.	2.5	13
128	A structure-based approach towards the identification of novel antichagasic compounds: <i>Trypanosoma cruzi</i> carbonic anhydrase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 21-30.	2.5	13
129	Biological investigation of <i>N</i> -methyl thiosemicarbazones as antimicrobial agents and bacterial carbonic anhydrases inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 986-993.	2.5	13
130	Activation studies with amines and amino acids of the α-carbonic anhydrase from the pathogenic protozoan Trypanosoma cruzi. Bioorganic and Medicinal Chemistry, 2018, 26, 4187-4190.	1.4	12
131	Sulfonamides incorporating piperazine bioisosteres as potent human carbonic anhydrase I, II, IV and IX inhibitors. Bioorganic Chemistry, 2019, 91, 103130.	2.0	12
132	An efficient method for the synthesis of novel derivatives 4-{5-[4-(4-amino-5-mercapto-4H-[1,2,4]triazol-3-yl)-phenyl]-3-trifluoromethyl-pyrazol-1-yl}-benzenesulfonamide and their anti-inflammatory potential. Bioorganic Chemistry, 2019, 91, 103110.	2.0	12
133	Glycomimetic Based Approach toward Selective Carbonic Anhydrase Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 727-731.	1.3	12
134	Synthesis and biological evaluation of novel 4,7-disubstituted coumarins as selective tumor-associated carbonic anhydrase IX and XII inhibitors. Bioorganic and Medicinal Chemistry Letters, 2021, 39, 127877.	1.0	12
135	Structural Insights into <i>Schistosoma mansoni</i> Carbonic Anhydrase (SmCA) Inhibition by Selenoureido-Substituted Benzenesulfonamides. Journal of Medicinal Chemistry, 2021, 64, 10418-10428.	2.9	12
136	Anion Inhibition Profile of the β-Carbonic Anhydrase from the Opportunist Pathogenic Fungus Malassezia Restricta Involved in Dandruff and Seborrheic Dermatitis. Metabolites, 2019, 9, 147.	1.3	11
137	Spirocyclic sulfonamides with carbonic anhydrase inhibitory and anti-neuropathic pain activity. Bioorganic Chemistry, 2019, 92, 103210.	2.0	11
138	Phenols from <i>Origanum dictamnus</i> L. and <i>Thymus vulgaris</i> L. and their activity against <i>Malassezia globosa</i> carbonic anhydrase. Natural Product Research, 2022, 36, 1558-1564.	1.0	11
139	Discovery of a novel series of indolylchalcone-benzenesulfonamide hybrids acting as selective carbonic anhydrase II inhibitors. Bioorganic Chemistry, 2021, 108, 104647.	2.0	11
140	New Sulfanilamide Derivatives Incorporating Heterocyclic Carboxamide Moieties as Carbonic Anhydrase Inhibitors. Pharmaceuticals, 2021, 14, 828.	1.7	11
141	Novel benzenesulfonamideâ€bearing pyrazoles and 1,2,4â€thiadiazoles as selective carbonic anhydrase inhibitors. Archiv Der Pharmazie, 2022, 355, e2100241.	2.1	11
142	Glyco-Coated CdSe/ZnS Quantum Dots as Nanoprobes for Carbonic Anhydrase IX Imaging in Cancer Cells. ACS Applied Nano Materials, 2021, 4, 14153-14160.	2.4	11
143	Tail-approach based design and synthesis of Arylthiazolylhydrazono-1,2,3-triazoles incorporating sulfanilamide and metanilamide as human carbonic anhydrase I, II, IV and IX inhibitors. Bioorganic Chemistry, 2022, 123, 105764.	2.0	11
144	Lucky Switcheroo: Dramatic Potency and Selectivity Improvement of Imidazoline Inhibitors of Human Carbonic Anhydrase VII. ACS Medicinal Chemistry Letters, 2017, 8, 1105-1109.	1.3	10

#	Article	IF	CITATIONS
145	Fluoroenesulphonamides: <i>N</i> -sulphonylurea isosteres showing nanomolar selective cancer-related transmembrane human carbonic anhydrase inhibition. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 804-808.	2.5	10
146	From random to rational: A discovery approach to selective subnanomolar inhibitors of human carbonic anhydrase IV based on the Castagnoli-Cushman multicomponent reaction. European Journal of Medicinal Chemistry, 2019, 182, 111642.	2.6	10
147	Inhibition of the newly discovered βâ€ʿcarbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with inorganic anions and small molecules. Journal of Inorganic Biochemistry, 2020, 213, 111274.	1.5	10
148	Crystal Structure of a Tetrameric Type II β-Carbonic Anhydrase from the Pathogenic Bacterium Burkholderia pseudomallei. Molecules, 2020, 25, 2269.	1.7	10
149	Handling drug-target selectivity: A study on ureido containing Carbonic Anhydrase inhibitors. European Journal of Medicinal Chemistry, 2021, 212, 113035.	2.6	10
150	Investigation of carbonic anhydrase inhibitory effects and cytotoxicities of pyrazole-based hybrids carrying hydrazone and zinc-binding benzenesulfonamide pharmacophores. Bioorganic Chemistry, 2022, 127, 105969.	2.0	10
151	Development of sulfonamides incorporating phenylacrylamido functionalities as carbonic anhydrase isoforms I, II, IX and XII inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 5726-5732.	1.4	9
152	Synthesis of N′-phenyl-N-hydroxyureas and investigation of their inhibitory activities on human carbonic anhydrases. Bioorganic Chemistry, 2018, 78, 1-6.	2.0	9
153	Exploring new structural features of the 4-[(3-methyl-4-aryl-2,3-dihydro-1,3-thiazol-2-ylidene)amino]benzenesulphonamide scaffold for the inhibition of human carbonic anhydrases. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1526-1533.	2.5	9
154	Activation Studies of the Î ³ -Carbonic Anhydrases from the Antarctic Marine Bacteria Pseudoalteromonas haloplanktis and Colwellia psychrerythraea with Amino Acids and Amines. Marine Drugs, 2019, 17, 238.	2.2	9
155	Design, Synthesis, and Biological Evaluation of 1,2,3-Triazole-linked triazino[5,6-b]indole-benzene sulfonamide Conjugates as Potent Carbonic Anhydrase I, II, IX, and XIII Inhibitors. Metabolites, 2020, 10, 200.	1.3	9
156	Effect of Carbonic Anhydrase IX inhibitors on human endothelial cell survival. Pharmacological Research, 2020, 159, 104964.	3.1	9
157	Discovery of first-in-class multi-target adenosine A2A receptor antagonists-carbonic anhydrase IX and XII inhibitors. 8-Amino-6-aryl-2-phenyl-1,2,4-triazolo [4,3-a]pyrazin-3-one derivatives as new potential antitumor agents. European Journal of Medicinal Chemistry, 2020, 201, 112478.	2.6	9
158	Inhibition studies on carbonic anhydrase isoforms I, II, IV and IX with N-arylsubstituted secondary sulfonamides featuring a bicyclic tetrahydroindazole scaffold. European Journal of Medicinal Chemistry, 2021, 220, 113490.	2.6	9
159	Sultam based Carbonic Anhydrase VII inhibitors for the management of neuropathic pain. European Journal of Medicinal Chemistry, 2022, 227, 113956.	2.6	9
160	Carbonic Anhydrase Inhibition with Sulfonamides Incorporating Pyrazole- and Pyridazinecarboxamide Moieties Provides Examples of Isoform-Selective Inhibitors. Molecules, 2021, 26, 7023.	1.7	9
161	Amine- and Amino Acid-Based Compounds as Carbonic Anhydrase Activators. Molecules, 2021, 26, 7331.	1.7	9
162	Identification of Novel and Potent Indole-Based Benzenesulfonamides as Selective Human Carbonic Anhydrase II Inhibitors: Design, Synthesis, In Vitro, and In Silico Studies. International Journal of Molecular Sciences, 2022, 23, 2540.	1.8	9

#	Article	IF	CITATIONS
163	Pyrazolo[4,3-c]pyridine Sulfonamides as Carbonic Anhydrase Inhibitors: Synthesis, Biological and In Silico Studies. Pharmaceuticals, 2022, 15, 316.	1.7	9
164	4-Anilinoquinazoline-based benzenesulfonamides as nanomolar inhibitors of carbonic anhydrase isoforms I, II, IX, and XII: design, synthesis, <i>in-vitro</i> , and <i>in-silico</i> biological studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 994-1004.	2.5	9
165	In Silico-Guided Identification of New Potent Inhibitors of Carbonic Anhydrases Expressed in <i>Vibrio cholerae</i> . ACS Medicinal Chemistry Letters, 2020, 11, 2294-2299.	1.3	8
166	N-aryl-N′-ureido-O-sulfamates as potent and selective inhibitors of hCA VB over hCA VA: Deciphering the binding mode of new potential agents in mitochondrial dysfunctions. Bioorganic Chemistry, 2020, 100, 103896.	2.0	8
167	Synthesis and Biological Evaluation of Coumarin-Linked 4-Anilinomethyl-1,2,3-Triazoles as Potent Inhibitors of Carbonic Anhydrases IX and XIII Involved in Tumorigenesis. Metabolites, 2021, 11, 225.	1.3	8
168	Inhibition of <i>Schistosoma mansoni</i> carbonic anhydrase by the antiparasitic drug clorsulon: X-ray crystallographic and <i>in vitro</i> studies. Acta Crystallographica Section D: Structural Biology, 2022, 78, 321-327.	1.1	8
169	Selenocarbamates As a Prodrugâ€Based Approach to Carbonic Anhydrase Inhibition. ChemMedChem, 2022, 17, .	1.6	8
170	One-Pot Procedure for the Synthesis of Asymmetric Substituted Ureido Benzene Sulfonamides as Effective Inhibitors of Carbonic Anhydrase Enzymes. Journal of Medicinal Chemistry, 2022, 65, 824-837.	2.9	8
171	Heterologous expression and biochemical characterisation of the recombinant β-carbonic anhydrase (MpaCA) from the warm-blooded vertebrate pathogen <i>malassezia pachydermatis</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 62-68.	2.5	8
172	Selective inhibition of carbonic anhydrase IX by sulphonylated 1,2,3-triazole incorporated benzenesulphonamides capable of inducing apoptosis. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1454-1463.	2.5	8
173	Inhibitors of Mitochondrial Human Carbonic Anhydrases VA and VB as a Therapeutic Strategy against Paclitaxel-Induced Neuropathic Pain in Mice. International Journal of Molecular Sciences, 2022, 23, 6229.	1.8	8
174	Investigation of piperazines as human carbonic anhydrase I, II, IV and VII activators. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 303-308.	2.5	7
175	The first activation study of the β-carbonic anhydrases from the pathogenic bacteriaBrucella suisandFrancisella tularensiswith amines and amino acids. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1178-1185.	2.5	7
176	Unconventional amino acids in medicinal chemistry: First report on taurine merged within carbonic anhydrase inhibitors. Bioorganic Chemistry, 2020, 103, 104236.	2.0	7
177	Benzylaminoethylureidoâ€Tailed Benzenesulfonamides Show Potent Inhibitory Activity against Bacterial Carbonic Anhydrases. ChemMedChem, 2020, 15, 2444-2447.	1.6	7
178	3-Functionalised benzenesulphonamide based 1,3,4-oxadiazoles as selective carbonic anhydrase XIII inhibitors: Design, synthesis and biological evaluation. Bioorganic and Medicinal Chemistry Letters, 2021, 37, 127856.	1.0	7
179	Synthesis of new 7â€aminoâ€3,4â€dihydroquinolinâ€2(1 <i>H</i>)â€oneâ€peptide derivatives and their carbonic anhydrase enzyme inhibition, antioxidant, and cytotoxic activities. Archiv Der Pharmazie, 2021, 354, e2100122.	2.1	7
180	Tellurides bearing benzensulfonamide as carbonic anhydrase inhibitors with potent antitumor activity. Bioorganic and Medicinal Chemistry Letters, 2021, 45, 128147.	1.0	7

#	Article	IF	CITATIONS
181	Exploration of 2-phenylquinoline-4-carboxamide linked benzene sulfonamide derivatives as isoform selective inhibitors of transmembrane human carbonic anhydrases. European Journal of Medicinal Chemistry, 2022, 234, 114247.	2.6	7
182	Synthesis of a new series of quinoline/pyridine indole-3-sulfonamide hybrids as selective carbonic anhydrase IX inhibitors. Bioorganic and Medicinal Chemistry Letters, 2022, 70, 128809.	1.0	7
183	Synthesis and human carbonic anhydrase I, II, VA, and XII inhibition with novel amino acid–sulphonamide conjugates. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 489-497.	2.5	6
184	Synthesis and carbonic anhydrase activating properties of a series of 2-amino-imidazolines structurally related to clonidine ¹ . Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1003-1010.	2.5	6
185	2-Mercaptobenzoxazoles: a class of carbonic anhydrase inhibitors with a novel binding mode to the enzyme active site. Chemical Communications, 2020, 56, 8297-8300.	2.2	6
186	Looking toward the Rim of the Active Site Cavity of Druggable Human Carbonic Anhydrase Isoforms. ACS Medicinal Chemistry Letters, 2020, 11, 1000-1005.	1.3	6
187	Synthesis, computational studies and assessment of <i>inÂvitro</i> inhibitory activity of umbelliferon-based compounds against tumour-associated carbonic anhydrase isoforms IX and XII. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1442-1449.	2.5	6
188	X-ray crystallography of Epacadostat in adduct with Carbonic Anhydrase IX. Bioorganic Chemistry, 2020, 97, 103669.	2.0	6
189	New Dihydrothiazole Benzensulfonamides: Looking for Selectivity toward Carbonic Anhydrase Isoforms I, II, IX, and XII. ACS Medicinal Chemistry Letters, 2020, 11, 852-856.	1.3	6
190	Preparation, carbonic anhydrase enzyme inhibition and antioxidant activity of novel 7-amino-3,4-dihydroquinolin-2(1H)-one derivatives incorporating mono or dipeptide moiety. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1021-1026.	2.5	6
191	Multitargeting application of proline-derived peptidomimetics addressing cancer-related human matrix metalloproteinase 9 and carbonic anhydrase II. European Journal of Medicinal Chemistry, 2021, 214, 113260.	2.6	6
192	Chromene-Containing Aromatic Sulfonamides with Carbonic Anhydrase Inhibitory Properties. International Journal of Molecular Sciences, 2021, 22, 5082.	1.8	6
193	Quinoline-sulfamoyl carbamates/sulfamide derivatives: Synthesis, cytotoxicity, carbonic anhydrase activity, and molecular modelling studies. Bioorganic Chemistry, 2021, 110, 104778.	2.0	6
194	Design and development of novel series of indoleâ€3â€sulfonamide ureido derivatives as selective carbonic anhydrase II inhibitors. Archiv Der Pharmazie, 2022, 355, e2100333.	2.1	6
195	Ureidosulfocoumarin Derivatives As Selective and Potent Carbonic Anhydrase IX and XII Inhibitors. ChemMedChem, 2022, 17, e202100725.	1.6	6
196	Sulfonamide diuretic azosemide as an efficient carbonic anhydrase inhibitor. Journal of Molecular Structure, 2022, 1268, 133672.	1.8	6
197	Screening of benzenesulfonamide in combination with chemically diverse fragments against carbonic anhydrase by differential scanning fluorimetry. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 306-310.	2.5	5
198	Mechanisms of the Antiproliferative and Antitumor Activity of Novel Telomerase–Carbonic Anhydrase Dual-Hybrid Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 11432-11444.	2.9	5

#	Article	IF	CITATIONS
199	4â€Sulfamoylphenylalkylamides as Inhibitors of Carbonic Anhydrases Expressed in <i>Vibrio cholerae</i> . ChemMedChem, 2021, 16, 3787-3794.	1.6	5
200	Novel 1,3,5-Triazinyl Aminobenzenesulfonamides Incorporating Aminoalcohol, Aminochalcone and Aminostilbene Structural Motifs as Potent Anti-VRE Agents, and Carbonic Anhydrases I, II, VII, IX, and XII Inhibitors. International Journal of Molecular Sciences, 2022, 23, 231.	1.8	5
201	Development of Praziquantel sulphonamide derivatives as antischistosomal drugs. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1479-1494.	2.5	5
202	Ionic liquids as an alternative reaction medium for HMDST based synthesis of thioaldehydes. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 156-158.	0.8	4
203	Further validation of strecker-type α-aminonitriles as a new class of potent human carbonic anhydrase Il inhibitors: hit expansion within the public domain using differential scanning fluorimetry leads to chemotype refinement. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 165-171.	2.5	4
204	Synthesis, Computational Studies and Assessment of <i>in Vitro</i> Activity of Squalene Derivatives as Carbonic Anhydrase Inhibitors. ChemMedChem, 2020, 15, 2052-2057.	1.6	4
205	Activation studies of the β-carbonic anhydrases from Malassezia restricta with amines and amino acids. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 824-830.	2.5	4
206	Taurultams incorporating arylsulfonamide: First inÂvitro inhibition studies of α-, β- and γ-class Carbonic Anhydrases from Vibrio cholerae and Burkholderia pseudomallei. European Journal of Medicinal Chemistry, 2021, 219, 113444.	2.6	4
207	Inhibition of the β-carbonic anhydrase from the protozoan pathogen <i>Trichomonas vaginalis</i> with sulphonamides. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 330-335.	2.5	4
208	Biochemical and structural characterization of beta-carbonic anhydrase from the parasite Trichomonas vaginalis. Journal of Molecular Medicine, 2022, 100, 115-124.	1.7	4
209	Design, synthesis and human carbonic anhydrase I, II, IX and XII inhibitory properties of 1,3-thiazole sulfonamides. Bioorganic and Medicinal Chemistry Letters, 2022, 59, 128581.	1.0	4
210	Treatment of sleep apnea with a combination of a carbonic anhydrase inhibitor and an aldosterone antagonist: a patent evaluation of CA2958110 and IN6616DEN2012. Expert Opinion on Therapeutic Patents, 2018, 28, 723-727.	2.4	3
211	Novel Indole-Based Hydrazones as Potent Inhibitors of the α-class Carbonic Anhydrase from Pathogenic Bacterium Vibrio cholerae. International Journal of Molecular Sciences, 2020, 21, 3131.	1.8	3
212	Activation of the β-carbonic anhydrase from the protozoan pathogen <i>Trichomonas vaginalis</i> with amines and amino acids. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 758-763.	2.5	3
213	Carbonic anhydrase activation profile of indole-based derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 1783-1797.	2.5	3
214	Inhibitory Effects of Sulfonamide Derivatives on the Î ² -Carbonic Anhydrase (MpaCA) from Malassezia pachydermatis, a Commensal, Pathogenic Fungus Present in Domestic Animals. International Journal of Molecular Sciences, 2021, 22, 12601.	1.8	3
215	Small Molecule Alkoxy Oriented Selectiveness on Human Carbonic Anhydrase II and IX Inhibition. ChemMedChem, 2022, 17, .	1.6	3
216	Calixarenes Incorporating Sulfonamide Moieties: Versatile Ligands for Carbonic Anhydrases Inhibition. Chemistry - A European Journal, 2022, 28, .	1.7	3

#	Article	IF	CITATIONS
217	Synthesis and biological evaluation of sulfonamideâ€based compounds as inhibitors of carbonic anhydrase from <i>Vibrio cholerae</i> . Archiv Der Pharmazie, 2022, 355, .	2.1	3
218	Synthesis of Azasugar–Sulfonamide conjugates and their Evaluation as Inhibitors of Carbonic Anhydrases: the Azasugar Approach to Selectivity. European Journal of Organic Chemistry, 2021, 2021, 2604-2614.	1.2	2
219	Design, synthesis and biochemical evaluation of novel carbonic anhydrase inhibitors triggered by structural knowledge on hCA VII. Bioorganic and Medicinal Chemistry, 2021, 44, 116279.	1.4	2
220	New Histamine-Related Five-Membered N-Heterocycle Derivatives as Carbonic Anhydrase I Activators. Molecules, 2022, 27, 545.	1.7	2
221	Benzoselenoates: A novel class of carbonic anhydrase inhibitors. Bioorganic Chemistry, 2022, 122, 105751.	2.0	2
222	Heterobimetallic complexes containing organometallic acylhydrazone ligands as potential inhibitors of human carbonic anhydrases. Journal of Inorganic Biochemistry, 2022, 232, 111814.	1.5	2
223	2-(2-Hydroxyethyl)piperazine derivatives as potent human carbonic anhydrase inhibitors: Synthesis, enzyme inhibition, computational studies and antiglaucoma activity. European Journal of Medicinal Chemistry, 2022, 228, 114026.	2.6	1
224	Design, synthesis, SAR, and biological evaluation of saccharinâ€based hybrids as carbonic anhydrase inhibitors. Archiv Der Pharmazie, 2022, , e2200019.	2.1	1
225	Mechanisms of action of carbonic anhydrase inhibitors. , 2019, , 223-243.		0
226	Design, synthesis, and biological evaluation of selective hCA IX inhibitors. , 2021, , 63-78.		0
227	Diversely substituted sulfamides for fragment-based drug discovery of carbonic anhydrase inhibitors: synthesis and inhibitory profile. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 857,865	2.5	О