
Teppo Tapio Särkämö

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3099403/publications.pdf

Version: 2024-02-01

ΤΕΡΡΟ ΤΛΡΙΟ SäκÃ₩Ã

#	Article	IF	CITATIONS
1	Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain, 2008, 131, 866-876.	7.6	627
2	Music-based interventions in neurological rehabilitation. Lancet Neurology, The, 2017, 16, 648-660.	10.2	316
3	Cognitive, Emotional, and Social Benefits of Regular Musical Activities in Early Dementia: Randomized Controlled Study. Gerontologist, The, 2014, 54, 634-650.	3.9	301
4	Structural Changes Induced by Daily Music Listening in the Recovering Brain after Middle Cerebral Artery Stroke: A Voxel-Based Morphometry Study. Frontiers in Human Neuroscience, 2014, 8, 245.	2.0	114
5	Music and Speech Listening Enhance the Recovery of Early Sensory Processing after Stroke. Journal of Cognitive Neuroscience, 2010, 22, 2716-2727.	2.3	92
6	Music listening after stroke: beneficial effects and potential neural mechanisms. Annals of the New York Academy of Sciences, 2012, 1252, 266-281.	3.8	88
7	Music and speech prosody: a common rhythm. Frontiers in Psychology, 2013, 4, 566.	2.1	67
8	Cognitive, emotional, and neural benefits of musical leisure activities in aging and neurological rehabilitation: A critical review. Annals of Physical and Rehabilitation Medicine, 2018, 61, 414-418.	2.3	65
9	Cognitive deficits associated with acquired amusia after stroke: A neuropsychological follow-up study. Neuropsychologia, 2009, 47, 2642-2651.	1.6	63
10	Editorial: Music, Brain, and Rehabilitation: Emerging Therapeutic Applications and Potential Neural Mechanisms. Frontiers in Human Neuroscience, 2016, 10, 103.	2.0	62
11	Music perception and cognition: development, neural basis, and rehabilitative use of music. Wiley Interdisciplinary Reviews: Cognitive Science, 2013, 4, 441-451.	2.8	60
12	Neural Basis of Acquired Amusia and Its Recovery after Stroke. Journal of Neuroscience, 2016, 36, 8872-8881.	3.6	53
13	Musicâ€supported therapy in the rehabilitation of subacute stroke patients: a randomized controlled trial. Annals of the New York Academy of Sciences, 2018, 1423, 318-328.	3.8	51
14	Music for the ageing brain: Cognitive, emotional, social, and neural benefits of musical leisure activities in stroke and dementia. Dementia, 2018, 17, 670-685.	2.0	50
15	Therapeutic Role of Music Listening in Stroke Rehabilitation. Annals of the New York Academy of Sciences, 2009, 1169, 426-430.	3.8	44
16	Music Therapy Enhances Executive Functions and Prefrontal Structural Neuroplasticity after Traumatic Brain Injury: Evidence from a Randomized Controlled Trial. Journal of Neurotrauma, 2020, 37, 618-634.	3.4	40
17	Clinical and Demographic Factors AssociatedÂwith the Cognitive and EmotionalÂEfficacy of Regular Musical Activities in Dementia. Journal of Alzheimer's Disease, 2015, 49, 767-781.	2.6	39
18	Auditory and Cognitive Deficits Associated with Acquired Amusia after Stroke: A Magnetoencephalography and Neuropsychological Follow-Up Study. PLoS ONE, 2010, 5, e15157.	2.5	39

ΤΕΡΡΟ ΤΑΡΙΟ Säκäö

#	Article	IF	CITATIONS
19	The Nature and Nurture of Melody: A Twin Study of Musical Pitch and Rhythm Perception. Behavior Genetics, 2016, 46, 506-515.	2.1	33
20	Effectiveness of music-based interventions on motricity or cognitive functioning in neurological populations: a systematic review. European Journal of Physical and Rehabilitation Medicine, 2017, 53, 466-482.	2.2	33
21	Golden oldies and silver brains: Deficits, preservation, learning, and rehabilitation effects of music in ageing-related neurological disorders. Cortex, 2018, 109, 104-123.	2.4	32
22	On the Association Between Musical Training, Intelligence and Executive Functions in Adulthood. Frontiers in Psychology, 2019, 10, 1704.	2.1	31
23	Beneficial effects of choir singing on cognition and well-being of older adults: Evidence from a cross-sectional study. PLoS ONE, 2021, 16, e0245666.	2.5	30
24	Pattern of Emotional Benefits Induced by Regular Singing and Music Listening in Dementia. Journal of the American Geriatrics Society, 2016, 64, 439-440.	2.6	29
25	Tracting the neural basis of music: Deficient structural connectivity underlying acquired amusia. Cortex, 2017, 97, 255-273.	2.4	25
26	Vocal music enhances memory and language recovery after stroke: pooled results from two RCTs. Annals of Clinical and Translational Neurology, 2020, 7, 2272-2287.	3.7	25
27	Functional neural changes associated with acquired amusia across different stages of recovery after stroke. Scientific Reports, 2017, 7, 11390.	3.3	21
28	Revisiting the Neural Basis of Acquired Amusia: Lesion Patterns and Structural Changes Underlying Amusia Recovery. Frontiers in Neuroscience, 2017, 11, 426.	2.8	21
29	Neural architectures of music – Insights from acquired amusia. Neuroscience and Biobehavioral Reviews, 2019, 107, 104-114.	6.1	21
30	Amusia and Cognitive Deficits after Stroke. Annals of the New York Academy of Sciences, 2009, 1169, 441-445.	3.8	20
31	Vocal Music Listening Enhances Poststroke Language Network Reorganization. ENeuro, 2021, 8, ENEURO.0158-21.2021.	1.9	18
32	Resting-State Network Plasticity Induced by Music Therapy after Traumatic Brain Injury. Neural Plasticity, 2021, 2021, 1-18.	2.2	17
33	What makes music memorable? Relationships between acoustic musical features and music-evoked emotions and memories in older adults. PLoS ONE, 2021, 16, e0251692.	2.5	15
34	Sung melody enhances verbal learning and recall after stroke. Annals of the New York Academy of Sciences, 2018, 1423, 296-307.	3.8	10
35	Isn't There Room for Music in Chronic Pain Management?. Journal of Pain, 2022, 23, 1143-1150.	1.4	10
36	Cognitive efficacy and neural mechanisms of musicâ€based neurological rehabilitation for traumatic brain injury. Annals of the New York Academy of Sciences, 2022, 1515, 20-32.	3.8	10

Τερρο Ταριο Säκäiö

#	Article	IF	CITATIONS
37	Cognitive and neural mechanisms underlying the mnemonic effect of songs after stroke. Neurolmage: Clinical, 2019, 24, 101948.	2.7	9
38	Enriched Music-supported Therapy for chronic stroke patients: a study protocol of a randomised controlled trial. BMC Neurology, 2021, 21, 19.	1.8	9
39	Neurological Music Therapy Rebuilds Structural Connectome after Traumatic Brain Injury: Secondary Analysis from a Randomized Controlled Trial. Journal of Clinical Medicine, 2022, 11, 2184.	2.4	9
40	Time course of motor gains induced by music-supported therapy after stroke: An exploratory case study Neuropsychology, 2017, 31, 624-635.	1.3	8
41	Musical training predicts cerebello-hippocampal coupling during music listening Psychomusicology: Music, Mind and Brain, 2018, 28, 152-163.	0.3	8
42	Effects of neurological music therapy on behavioural and emotional recovery after traumatic brain injury: A randomized controlled cross-over trial. Neuropsychological Rehabilitation, 2022, 32, 1356-1388.	1.6	6
43	Restingâ€state language network neuroplasticity in postâ€stroke music listening: A randomized controlled trial. European Journal of Neuroscience, 2021, 54, 7886-7898.	2.6	5
44	Neuroanatomical correlates of speech and singing production in chronic post-stroke aphasia. Brain Communications, 2022, 4, fcac001.	3.3	5
45	Post-stroke enriched auditory environment induces structural connectome plasticity: secondary analysis from a randomized controlled trial. Brain Imaging and Behavior, 2022, 16, 1813-1822.	2.1	5
46	DARE to move: feasibility study of a novel dance-based rehabilitation method in severe traumatic brain injury. Brain Injury, 2021, 35, 335-344.	1.2	4
47	Right ventral stream damage underlies both poststroke aprosodia and amusia. European Journal of Neurology, 2022, 29, 873-882.	3.3	4
48	Mitigating the Impact of the Novel Coronavirus Pandemic on Neuroscience and Music Research Protocols in Clinical Populations. Frontiers in Psychology, 2020, 11, 2160.	2.1	3
49	Clinical and Neural Predictors of Treatment Response to Music Listening Intervention after Stroke. Brain Sciences, 2021, 11, 1576.	2.3	3
50	Benefits of choir singing on complex auditory encoding in the aging brain: An ERP study. Annals of the New York Academy of Sciences, 2022, 1514, 82-92.	3.8	3
51	Singing the blues away: reduction of depression in dementia by recreational choir singing. The Lancet Healthy Longevity, 2022, 3, e124-e125.	4.6	2
52	Lost in sound: auditory perceptual abilities in neurodegenerative diseases. Brain, 2020, 143, 2626-2627.	7.6	1
53	[S4–01–04]: COGNITIVE, EMOTIONAL AND SOCIAL BENEFITS OF REGULAR MUSICAL ACTIVITIES IN EARLY DEMENTIA. Alzheimer's and Dementia, 2017, 13, P1209.	0.8	0

54 Stroke and acquired amusia. , 2020, , 151-172.

#	Article	IF	CITATIONS
55	Music Perception and Amusia. , 2022, , 678-685.		0
56	Music for the Brain Across Life. A NIME Reader Fifteen Years of New Interfaces for Musical Expression, 2013, , 181-194.	0.1	0