Carsten Prasse

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3099236/carsten-prasse-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

48 2,321 25 47 h-index g-index citations papers 2,761 49 9.1 5.34 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
47	Adaptation of selected models for describing competitive per- and polyfluoroalkyl substances breakthrough curves in groundwater treated by granular activated carbon <i>Journal of Hazardous Materials</i> , 2022 , 433, 128804	12.8	O
46	Characterizing the Chemical Landscape in Commercial E-Cigarette Liquids and Aerosols by Liquid Chromatography-High-Resolution Mass Spectrometry. <i>Chemical Research in Toxicology</i> , 2021 , 34, 2216-2	2 2 26	6
45	Ozonation products of zidovudine and thymidine in oxidative water treatment. <i>Water Research X</i> , 2021 , 11, 100090	8.1	3
44	Reactivity-directed analysis - a novel approach for the identification of toxic organic electrophiles in drinking water. <i>Environmental Sciences: Processes and Impacts</i> , 2021 , 23, 48-65	4.3	3
43	Enhanced Treatment of Municipal Wastewater Effluents by Fe-TAML/HO: Efficiency of Micropollutant Abatement. <i>Environmental Science & Enphanology</i> , 2021 , 55, 3313-3321	10.3	9
42	Aqueous ozonation of furans: Kinetics and transformation mechanisms leading to the formation of Funsaturated dicarbonyl compounds. <i>Water Research</i> , 2021 , 203, 117487	12.5	2
41	Response to Letter to the Editor Regarding Characterizing the Chemical Landscape in Commercial E-Cigarette Liquids and Aerosols by Liquid Chromatography-High-Resolution Mass Spectrometry Chemical Research in Toxicology, 2021,	4	O
40	Exotic Electrophiles in Chlorinated and Chloraminated Water: When Conventional Kinetic Models and Reaction Pathways Fall Short. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 360-370	11	11
39	Ring-Cleavage Products Produced during the Initial Phase of Oxidative Treatment of Alkyl-Substituted Aromatic Compounds. <i>Environmental Science & Environmental Science & Envi</i>	10.3	10
38	Chlorination of Phenols Revisited: Unexpected Formation of #Unsaturated C-Dicarbonyl Ring Cleavage Products. <i>Environmental Science & Environmental Sc</i>	10.3	27
37	Formation and Fate of Carbonyls in Potable Water Reuse Systems. <i>Environmental Science & Environmental Science & Technology</i> , 2020 , 54, 10895-10903	10.3	7
36	Microbial degradation pathways of the herbicide bentazone in filter sand used for drinking water treatment. <i>Environmental Science: Water Research and Technology</i> , 2019 , 5, 521-532	4.2	7
35	The Role of Reactive Nitrogen Species in Sensitized Photolysis of Wastewater-Derived Trace Organic Contaminants. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	49
34	Effect of Histone Lysine Methylation on DNA Lesion Reactivity in Nucleosome Core Particles. <i>Chemical Research in Toxicology</i> , 2019 , 32, 910-916	4	7
33	What you extract is what you see: Optimising the preparation of water and wastewater samples for in livitro bioassays. <i>Water Research</i> , 2019 , 152, 47-60	12.5	26
32	Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 2311-2	3 ¹ 16 ⁵	56
31	Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic HO Production and UV Photolysis. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	15

30	Evidence of co-metabolic bentazone transformation by methanotrophic enrichment from a groundwater-fed rapid sand filter. <i>Water Research</i> , 2018 , 129, 105-114	12.5	29
29	Investigation and risk evaluation of the occurrence of carbamazepine, oxcarbazepine, their human metabolites and transformation products in the urban water cycle. <i>Environmental Pollution</i> , 2017 , 225, 261-269	9.3	36
28	Integrated Evaluation Concept to Assess the Efficacy of Advanced Wastewater Treatment Processes for the Elimination of Micropollutants and Pathogens. <i>Environmental Science & Environmental Science & Technology</i> , 2017 , 51, 308-319	10.3	38
27	Occurrence and fate of amisulpride, sulpiride, and lamotrigine in municipal wastewater treatment plants with biological treatment and ozonation. <i>Journal of Hazardous Materials</i> , 2016 , 320, 204-215	12.8	68
26	Exploring Trends of C and N Isotope Fractionation to Trace Transformation Reactions of Diclofenac in Natural and Engineered Systems. <i>Environmental Science & Environmental Sc</i>	10.3	12
25	Oxidation of Benzene by Persulfate in the Presence of Fe(III)- and Mn(IV)-Containing Oxides: Stoichiometric Efficiency and Transformation Products. <i>Environmental Science & amp; Technology</i> , 2016 , 50, 890-8	10.3	190
24	Identification of transformation products of antiviral drugs formed during biological wastewater treatment and their occurrence in the urban water cycle. <i>Water Research</i> , 2016 , 98, 75-83	12.5	62
23	Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters. <i>Water Research</i> , 2016 , 100, 580-592	12.5	133
22	Electrochemical Transformation of Trace Organic Contaminants in the Presence of Halide and Carbonate Ions. <i>Environmental Science & Environmental Scie</i>	10.3	73
21	Application of Orbitrap Mass Spectrometry for the Identification of Transformation Products of Trace Organic Contaminants Formed in the Environment. <i>Comprehensive Analytical Chemistry</i> , 2016 , 71, 263-282	1.9	3
20	Why Small Differences Matter: Elucidation of the Mechanisms Underlying the Transformation of 2OH- and 3OH-Carbamazepine in Contact with Sand Filter Material. <i>Environmental Science & Environmental Science & Technology</i> , 2015 , 49, 10449-56	10.3	12
19	Spoilt for choice: A critical review on the chemical and biological assessment of current wastewater treatment technologies. <i>Water Research</i> , 2015 , 87, 237-70	12.5	205
18	Oxypurinol - A novel marker for wastewater contamination of the aquatic environment. <i>Water Research</i> , 2015 , 74, 257-65	12.5	35
17	Co-occurrence of Photochemical and Microbiological Transformation Processes in Open-Water Unit Process Wetlands. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	46
16	Toxification by Transformation in Conventional and Advanced Wastewater Treatment: The Antiviral Drug Acyclovir. <i>Environmental Science and Technology Letters</i> , 2015 , 2, 342-346	11	37
15	Assessing the photochemical transformation pathways of acetaminophen relevant to surface waters: transformation kinetics, intermediates, and modelling. <i>Water Research</i> , 2014 , 53, 235-48	12.5	86
14	Transformation of oxcarbazepine and human metabolites of carbamazepine and oxcarbazepine in wastewater treatment and sand filters. <i>Environmental Science & Environmental Scie</i>	10.3	87
13	In response: what are the challenges and prospects? An academic perspective. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 2408-10	3.8	4

12	Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes?. <i>Water Research</i> , 2013 , 47, 5955-76	12.5	217
11	Contamination and source assessment of metals, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons in urban soils from Addis Ababa, Ethiopia. <i>Toxicological and Environmental Chemistry</i> , 2012 , 94, 1954-1979	1.4	20
10	Oxidation of the antiviral drug acyclovir and its biodegradation product carboxy-acyclovir with ozone: kinetics and identification of oxidation products. <i>Environmental Science & Environmental Scien</i>	10.3	80
9	Biological surface coating and molting inhibition as mechanisms of TiO2 nanoparticle toxicity in Daphnia magna. <i>PLoS ONE</i> , 2011 , 6, e20112	3.7	149
8	Biotransformation of the antiviral drugs acyclovir and penciclovir in activated sludge treatment. <i>Environmental Science & Environmental Science & Env</i>	10.3	86
7	Translocation of Sb and Ti in an undisturbed floodplain soil after application of Sb2O3 and TiO2 nanoparticles to the surface. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 1204-11		16
6	Antiviral drugs in wastewater and surface waters: a new pharmaceutical class of environmental relevance?. <i>Environmental Science & Environmental Environme</i>	10.3	201
5	Removal of Organic and Inorganic Pollutants and Pathogens from Wastewater and Drinking Water Using Nanoparticles A Review 2010 , 55-79		7
4	Bioaccumulation of ivermectin from natural and artificial sediments in the benthic organism Lumbriculus variegatus. <i>Journal of Soils and Sediments</i> , 2010 , 10, 1611-1622	3.4	8
3	Environmental risk assessment of ivermectin: A case study. <i>Integrated Environmental Assessment and Management</i> , 2010 , 6 Suppl, 567-87	2.5	76
2	Environmental fate of the anthelmintic ivermectin in an aerobic sediment/water system. <i>Chemosphere</i> , 2009 , 77, 1321-5	8.4	44