M Mercedes Pastor-Blas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3099149/publications.pdf

Version: 2024-02-01

65 papers

1,617 citations

249298 26 h-index 371746 37 g-index

65 all docs

 $\begin{array}{c} 65 \\ \text{docs citations} \end{array}$

65 times ranked 1447 citing authors

#	Article	IF	Citations
1	Nâ€Doped Activated Carbons from Polypyrrole â \in " Effect of Steam Activation Conditions. Chemie-Ingenieur-Technik, 2022, 94, 94-100.	0.4	3
2	Metal-free abatement of nitrate contaminant from water using a conducting polymer. Chemical Engineering Journal, 2021, 403, 126228.	6.6	7
3	"H2-free―demethoxylation of guaiacol in subcritical water using Pt supported on N-doped carbon catalysts: A cost-effective strategy for biomass upgrading. Journal of Energy Chemistry, 2021, 58, 377-385.	7.1	19
4	In-situ HDO of guaiacol over nitrogen-doped activated carbon supported nickel nanoparticles. Applied Catalysis A: General, 2021, 620, 118033.	2.2	27
5	Hydrogenation of 4-nitrochlorobenzene catalysed by cobalt nanoparticles supported on nitrogen-doped activated carbon. Catalysis Science and Technology, 2021, 11, 3845-3854.	2.1	7
6	Catalytic Conversion of Palm Oil to Bio-Hydrogenated Diesel over Novel N-Doped Activated Carbon Supported Pt Nanoparticles. Energies, 2020, 13, 132.	1.6	37
7	Conducting Polymer–TiO ₂ Hybrid Materials: Application in the Removal of Nitrates from Water. Langmuir, 2019, 35, 6089-6105.	1.6	11
8	Effect of cold Ar plasma treatment on the catalytic performance of Pt/CeO2 in water-gas shift reaction (WGS). Applied Catalysis B: Environmental, 2018, 225, 121-127.	10.8	39
9	Proposed mechanisms for the removal of nitrate from water by platinum catalysts supported on polyaniline and polypyrrole. Applied Catalysis B: Environmental, 2018, 225, 162-171.	10.8	44
10	Surfactant-assisted synthesis of conducting polymers. Application to the removal of nitrates from water. Journal of Colloid and Interface Science, 2017, 494, 98-106.	5.0	17
11	Plasmaâ€Assisted Synthesis of Monodispersed and Robust Ruthenium Ultrafine Nanocatalysts for Organosilane Oxidation and Oxygen Evolution Reactions. ChemCatChem, 2017, 9, 4159-4163.	1.8	11
12	Green synthesis of polypyrrole-supported metal catalysts: application to nitrate removal in water. RSC Advances, 2015, 5, 32706-32713.	1.7	14
13	Environmentally friendly reduction of a platinum catalyst precursor supported on polypyrrole. Green Chemistry, 2013, 15, 1981.	4.6	70
14	Surface modification of natural halloysite clay nanotubes with aminosilanes. Application as catalyst supports in the atom transfer radical polymerization of methyl methacrylate. Applied Catalysis A: General, 2011, 406, 22-33.	2.2	108
15	Influence of the surface chemistry of activated carbons on the ATRP catalysis of methyl methacrylate polymerization. Applied Catalysis A: General, 2011, 397, 225-233.	2.2	7
16	Influence of Rubber Formulation on Surface Modifications Produced by RF Plasma. Plasma Chemistry and Plasma Processing, 2010, 30, 311-332.	1.1	5
17	Influence of the porous structure of activated carbons in the activity of ATRP catalyst for methyl methacrylate polymerization. Catalysis Today, 2010, 150, 42-48.	2.2	6
18	Compatibility Improvement between Chlorinated Thermoplastic Rubber and Polychloroprene Adhesive. Rubber Chemistry and Technology, 2009, 82, 18-36.	0.6	2

#	Article	IF	Citations
19	Use of nanotubes of natural halloysite as catalyst support in the atom transfer radical polymerization of methyl methacrylate. Microporous and Mesoporous Materials, 2009, 120, 132-140.	2.2	95
20	Migration of Processing Oils of Thermoplastic Rubber Treated with RF Plasma. Plasma Chemistry and Plasma Processing, 2008, 28, 391-404.	1.1	6
21	Interactions at the interface between thermoplastic rubber and polychloroprene adhesive. Surface and Interface Analysis, 2008, 40, 107-120.	0.8	7
22	Improved Adhesion of RF Plasma Treated Rubbers by Isocyanate Incorporation to Polyurethane Adhesive. Plasma Processes and Polymers, 2008, 5, 681-694.	1.6	9
23	Environmental Friendly Surface Treatment of SBS Rubber with Acidified Chloramine T Aqueous Solutions. Rubber Chemistry and Technology, 2007, 80, 139-158.	0.6	5
24	Elimination of the reactivation process in the adhesion of chlorinated SBS rubber with polychloroprene adhesives. EXPRESS Polymer Letters, 2007, 1, 236-244.	1.1	6
25	Different Performance of Ar, O2 and CO2 RF Plasmas in the Adhesion of Thermoplastic Rubber to Polyurethane Adhesive., 2005,, 177-192.		10
26	Environmental friendly surface treatments of styrene–butadiene–styrene rubber: alternatives to the solvent-based halogenation treatment. International Journal of Adhesion and Adhesives, 2005, 25, 19-29.	1.4	26
27	Addition of ozone in the UV radiation treatment of a synthetic styrene-butadiene-styrene (SBS) rubber. International Journal of Adhesion and Adhesives, 2005, 25, 358-370.	1.4	60
28	Influence of calcium carbonate added to the SBS rubber formulation on the surface modifications produced by halogenation. Journal of Adhesion Science and Technology, 2005, 19, 1237-1247.	1.4	6
29	Water-based chlorination treatment of SBS rubber soles to improve their adhesion to waterborne polyurethane adhesives in the footwear industry. Journal of Adhesion Science and Technology, 2005, 19, 947-974.	1.4	7
30	SURFACE MODIFICATIONS AND ADHESION OF VULCANIZED SBR RUBBER TREATED WITH RF PLASMAS OF DIFFERENT GASES. Journal of Adhesion, 2004, 80, 613-634.	1.8	27
31	Treatment of a styrene-butadiene-styrene rubber with corona discharge to improve the adhesion to polyurethane adhesive. International Journal of Adhesion and Adhesives, 2003, 23, 49-57.	1.4	49
32	Treatment of thermoplastic rubberwith chlorine bleach as an alternative halogenation treatment in the footwear industry. Journal of Adhesion, 2003, 79, 207-237.	1.8	17
33	Improved adhesion between polyurethane and SBR rubber treated with trichloroisocyanuric acid solutions containing different concentrations of chlorine. Composite Interfaces, 2003, 10, 77-94.	1.3	14
34	UV treatment of synthetic styrene-butadiene-styrene rubber. Journal of Adhesion Science and Technology, 2003, 17, 25-45.	1.4	32
35	Mechanisms of Adhesion in Surface Chlorinated Thermoplastic Rubber/Thermoplastic Polyurethane Adhesive Joints. Rubber Chemistry and Technology, 2002, 75, 825-838.	0.6	13
36	MEK wiping prior to chlorination to improve the adhesion of vulcanized SBR rubber containing paraffin wax. Journal of Adhesion Science and Technology, 2002, 16, 1765-1780.	1.4	4

#	Article	IF	Citations
37	Different surface modifications produced by oxygen plasma and halogenation treatments on a vulcanized rubber. Journal of Adhesion Science and Technology, 2002, 16, 409-428.	1.4	18
38	Improved peel strength in vulcanized sbr rubber roughened before chlorination with trichloroisocyanuric acid. Journal of Adhesion, 2002, 78, 15-38.	1.8	27
39	Influence of Chlorinating Solution Concentration on the Interactions Produced Between Chlorinated Thermoplastic Rubber and Polyurethane Adhesive at the Interface. Journal of Adhesion, 2002, 78, 39-77.	1.8	12
40	A new water-based chemical treatment based on sodium dichloroisocyanurate (DCI) for rubber soles in the footwear industry. Journal of Adhesion Science and Technology, 2002, 16, 257-283.	1.4	12
41	Chlorination of vulcanized SBR rubber by immersion or brushing in TCI solutions. Journal of Adhesion Science and Technology, 2001, 15, 1601-1619.	1.4	14
42	Durability of the halogenation in synthetic rubber. International Journal of Adhesion and Adhesives, 2001, 21, 101-106.	1.4	30
43	Influence of the styrene content of thermoplastic styrene–butadiene rubbers in the effectiveness of the treatment with sulfuric acid. International Journal of Adhesion and Adhesives, 2001, 21, 161-172.	1.4	42
44	Adhesion improvement of SBR rubber by treatment with trichloroisocyanuric acid solutions in different esters. International Journal of Adhesion and Adhesives, 2001, 21, 325-337.	1.4	70
45	Title is missing!. Plasmas and Polymers, 2001, 6, 81-105.	1.5	42
46	Title is missing!. Journal of Materials Science, 2001, 36, 5789-5799.	1.7	37
47	Weak boundary layers on vulcanized styrene–butadiene rubber treated with sulfuric acid. Journal of Adhesion Science and Technology, 2001, 15, 1323-1350.	1.4	9
48	Assessment of the locus of failure of oxygen plasma-treated rubber/polyurethane adhesive joints using XPS and IRATR spectroscopy. Surface and Interface Analysis, 2000, 30, 7-11.	0.8	15
49	Surface Characterization of Vulcanized Rubber Treated with Sulfuric Acid and its Adhesion to Polyurethane Adhesive. Journal of Adhesion, 2000, 73, 135-160.	1.8	45
50	Chlorination of vulcanized styrene-butadiene rubber using solutions of trichloroisocyanuric acid in different solvents. Journal of Adhesion Science and Technology, 2000, 14, 561-581.	1.4	31
51	Chlorination of SBS rubbers with different styrene contents using trichloro-isocyanuric acid. Journal of Adhesion Science and Technology, 1999, 13, 903-930.	1.4	20
52	Surface characterization of synthetic vulcanized rubber treated with oxygen plasma. Surface and Interface Analysis, 1998, 26, 385-399.	0.8	46
53	Properties of Polyurethane Elastomers with Different Hard/Soft Segment Ratio. Journal of Adhesion, 1998, 67, 327-345.	1.8	37
54	Surface characterization of synthetic vulcanized rubber treated with oxygen plasma., 1998, 26, 385.		1

#	Article	IF	CITATIONS
55	Comparison of the Properties of Polyurethane Adhesives Containing Fumed Silica or Sepiolite as Filler. Journal of Adhesion, 1997, 61, 195-211.	1.8	16
56	Surface Characterization of Chlorinated Synthetic Vulcanized Styrene-Butadiene Rubber Using Contact Angle Measurements, Infra-Red Spectroscopy and XPS. Journal of Adhesion, 1997, 63, 121-140.	1.8	10
57	Surface Analysis of Debonded Chlorinated Vulcanized Styrene-Butadiene Rubber Joints. Journal of Adhesion, 1997, 62, 23-43.	1.8	4
58	Characterization of solvent-based polyurethane adhesives containing sepiolite as a filler. Rheological, mechanical, surface, and adhesion properties. Journal of Adhesion Science and Technology, 1997, 11, 247-262.	1.4	18
59	Influence of the nature and formulation of sty rene-butadiene rubber on the effects produced by surface treatment with trichloroisocyanuric acid. Journal of Adhesion Science and Technology, 1997, 11, 447-470.	1.4	23
60	Properties of elastomeric polyurethanes obtained with $\ddot{l}\mu$ -caprolactone macroglycol. International Journal of Adhesion and Adhesives, 1997, 17, 155-161.	1.4	27
61	Structural modification of sepiolite (natural magnesium silicate) by thermal treatment: effect on the properties of polyurethane adhesives. International Journal of Adhesion and Adhesives, 1997, 17, 111-119.	1.4	46
62	Failure analysis of surface-treated unvulcanized SBS rubber/polyurethane adhesive joints. International Journal of Adhesion and Adhesives, 1997, 17, 133-141.	1.4	31
63	Weak Boundary Layers in Styrene-Butadiene Rubber. Journal of Adhesion, 1995, 50, 191-210.	1.8	40
64	Relevance of polyurethane configuration on adhesion properties. International Journal of Adhesion and Adhesives, 1994, 14, 193-200.	1.4	22
65	Surface modification of synthetic vulcanized rubber. Journal of Adhesion Science and Technology, 1994, 8, 1093-1114.	1.4	45