Gianluca Pozzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3099138/publications.pdf

Version: 2024-02-01

117625 133252 4,048 109 34 59 citations h-index g-index papers 131 131 131 4688 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular Engineering of Thienyl Functionalized Ullazines as Holeâ€Transporting Materials for Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	5
2	Electron Donorâ€Acceptor Spirobi[cyclopenta[2,1―b  : 3,4―b′]dithiophene] Derivatives as Precurs Electrodeposited Regioregular Thiopheneâ€based Polymers. European Journal of Organic Chemistry, 2021, 2021, 671-682.	sors of 2.4	1
3	Optoelectronic and Energy Level Exploration of Bismuth and Antimony-Based Materials for Lead-Free Solar Cells. Chemistry of Materials, 2020, 32, 6416-6424.	6.7	40
4	Spatial Charge Separation as the Origin of Anomalous Stark Effect in Fluorous 2D Hybrid Perovskites. Advanced Functional Materials, 2020, 30, 2000228.	14.9	12
5	Synthesis and 19F NMR parameters of a perfluoro-tert-butoxy tagged L-DOPA analogue. Journal of Fluorine Chemistry, 2020, 237, 109596.	1.7	5
6	Zinc phthalocyanines as light harvesters for SnO2-based solar cells: a case study. Scientific Reports, 2020, 10, 1176.	3.3	11
7	Elucidating the Doping Mechanism in Fluorene–Dithiophene-Based Hole Selective Layer Employing Ultrahydrophobic Ionic Liquid Dopant. ACS Applied Materials & Interfaces, 2020, 12, 9395-9403.	8.0	26
8	Perovskite Solar Cells: 18% Efficiency Using Zn(II) and Cu(II) Octakis(diarylamine)phthalocyanines as Hole-Transporting Materials. ACS Applied Energy Materials, 2019, 2, 6195-6199.	5.1	12
9	Dual Benzophenone/Copperâ€Photocatalyzed Gieseâ€Type Alkylation of C(sp ³)â^H Bonds. Chemistry - A European Journal, 2019, 25, 16120-16127.	3.3	28
10	Improving the Electropolymerization Properties of Fluorene-Bridged Dicarbazole Monomers through Polyfluoroalkyl Side Chains. Langmuir, 2019, 35, 8732-8740.	3.5	8
11	BODIPY Dyes Bearing Multibranched Fluorinated Chains: Synthesis, Structural, and Spectroscopic Studies. Chemistry - A European Journal, 2019, 25, 9078-9087.	3.3	16
12	How the Horváth paradigm, Fluorous Biphasic Catalysis, affected oxidation chemistry: Successes, challenges, and a sustainable future. Coordination Chemistry Reviews, 2019, 380, 584-599.	18.8	19
13	Fluorination of Organic Spacer Impacts on the Structural and Optical Response of 2D Perovskites. Frontiers in Chemistry, 2019, 7, 946.	3.6	14
14	Fashioning Fluorous Organic Spacers for Tunable and Stable Layered Hybrid Perovskites. Chemistry of Materials, 2018, 30, 8211-8220.	6.7	35
15	Water-Repellent Low-Dimensional Fluorous Perovskite as Interfacial Coating for 20% Efficient Solar Cells. Nano Letters, 2018, 18, 5467-5474.	9.1	118
16	Femtosecond Chargeâ€Injection Dynamics at Hybrid Perovskite Interfaces. ChemPhysChem, 2017, 18, 2381-2389.	2.1	24
17	Dye-sensitized solar cells based on a push-pull zinc phthalocyanine bearing diphenylamine donor groups: computational predictions face experimental reality. Scientific Reports, 2017, 7, 15675.	3.3	17
18	Fluorous molecules for dye-sensitized solar cells: synthesis and properties of di-branched, di-anchoring organic sensitizers containing fluorene subunits. New Journal of Chemistry, 2017, 41, 7729-7738.	2.8	9

#	Article	IF	Citations
19	High Open-Circuit Voltage: Fabrication of Formamidinium Lead Bromide Perovskite Solar Cells Using Fluorene–Dithiophene Derivatives as Hole-Transporting Materials. ACS Energy Letters, 2016, 1, 107-112.	17.4	105
20	Perovskite Solar Cells Employing Molecularly Engineered Zn(II) Phthalocyanines as Hole-transporting Materials. Nano Energy, 2016, 30, 853-857.	16.0	52
21	Property tuning in unsymmetrical alkoxy zinc phthalocyanines by introduction of perfluoro-tert-butoxy end groups. Journal of Fluorine Chemistry, 2016, 188, 110-116.	1.7	8
22	A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy, 2016, $1, \dots$	39.5	816
23	Synthesis and Properties of an Electropolymer Obtained from a Dimeric Donor/Acceptor System with a $4,4\hat{a}\in^2$ -Spirobi[cyclopenta[2,1- <i>b</i> ;3,4- <i>b</i>)ale2] dithiophene] Core. Macromolecules, 2015, 48, 4364-437.	2 ^{4.8}	11
24	Search for the Most â€~primitive' Membranes and Their Reinforcers: A Review of the Polyprenyl Phosphates Theory. Origins of Life and Evolution of Biospheres, 2014, 44, 197-208.	1.9	21
25	Chemoselective Synthesis of <i>N</i> â€Protected Alkoxyprolines under Specific Solvation Conditions. European Journal of Organic Chemistry, 2014, 2014, 5351-5355.	2.4	10
26	Oxidation of cycloalkanes with molecular oxygen in the presence of salen metallocomplexes in thermomorphic conditions. Catalysis Communications, 2013, 39, 102-105.	3.3	12
27	Synthesis and Photovoltaic Applications of a 4,4′-Spirobi[cyclopenta[2,1- <i>b</i> ;3,4- <i>b</i> à€²]dithiophene]-Bridged Donor/Acceptor Dye. Organic Letters, 2013, 15, 4642-4645.	4.6	37
28	Synthesis and catalytic activity of fluorous chiral primary amine-thioureas. New Journal of Chemistry, 2013, 37, 4140.	2.8	16
29	Ion-Selective Electrodes with Unusual Response Functions: Simultaneous Formation of Ionophore–Primary Ion Complexes with Different Stoichiometries. Analytical Chemistry, 2012, 84, 1104-1111.	6.5	25
30	Fluorous Molecules for Dye-Sensitized Solar Cells: Synthesis and Characterization of Fluorene-Bridged Donor/Acceptor Dyes with Bulky Perfluoroalkoxy Substituents. Journal of Physical Chemistry C, 2012, 116, 21190-21200.	3.1	32
31	Potentiometric Sensors Based on Fluorous Membranes Doped with Highly Selective Ionophores for Carbonate. Journal of the American Chemical Society, 2011, 133, 20869-20877.	13.7	62
32	Fluorous Molecules for Dye-Sensitized Solar Cells: Synthesis and Photoelectrochemistry of Unsymmetrical Zinc Phthalocyanine Sensitizers with Bulky Fluorophilic Donor Groups. Journal of Physical Chemistry C, 2011, 115, 3777-3788.	3.1	35
33	Fluoroponytailed Crown Ethers and Quaternary Ammonium Salts as Solid-Liquid Phase Transfer Catalysts in Organic Synthesis. Topics in Current Chemistry, 2011, 308, 213-232.	4.0	3
34	3,5â€Bis(<i>n</i> â€perfluorooctyl)benzyltriethylammonium Bromide (Fâ€TEBA): An Efficient, Easily Recoverable Fluorous Catalyst for Solidâ€Liquid PTC Reactions. Advanced Synthesis and Catalysis, 2009, 351, 3072-3076.	4.3	13
35	Perfluorocarbon Soluble Crown Ethers as Phase Transfer Catalysts. Advanced Synthesis and Catalysis, 2008, 350, 2425-2436.	4.3	29
36	Fluorous phase transfer catalysts: From onium salts to crown ethers. Journal of Fluorine Chemistry, 2008, 129, 920-929.	1.7	32

#	Article	IF	CITATIONS
37	Efficient condensation of carboxylic acids with alcohols catalyzed by fluorous ammonium triflates. Tetrahedron Letters, 2007, 48, 3053-3056.	1.4	29
38	Fluorous TEMPO: An Efficient Mediator for the Aerobic Oxidation of Alcohols to Carbonyl Compounds. QSAR and Combinatorial Science, 2006, 25, 736-741.	1.4	12
39	Asymmetric cyclopropanation catalyzed by fluorous bis(oxazolines)–copper complexes. Tetrahedron: Asymmetry, 2006, 17, 1568-1572.	1.8	36
40	Straightforward Synthesis of a Fluorous Tetraarylporphyrin: an Efficient and Recyclable Sensitizer for Photooxygenation Reactions. Advanced Synthesis and Catalysis, 2006, 348, 1611-1620.	4.3	15
41	Fluorous derivatives of (1R,2R)-diaminocyclohexane as chiral ligands for metal-catalyzed asymmetric reactions. Tetrahedron: Asymmetry, 2005, 16, 2319-2327.	1.8	24
42	Aerobic oxidation of alcohols to carbonyl compounds mediated by poly(ethylene glycol)-supported TEMPO radicals. Tetrahedron, 2005, 61, 12058-12064.	1.9	73
43	Selective Oxidation of Alcohols to Carbonyl Compounds Mediated by Fluorous-Tagged TEMPO Radicals. Advanced Synthesis and Catalysis, 2005, 347, 677-688.	4.3	59
44	Monolayers of Salen Derivatives as Catalytic Planes for Alkene Oxidation in Water. Chemistry - A European Journal, 2005, 11, 6032-6039.	3.3	11
45	Enantiopure Fluorous Amino-Derivatives: Synthesis and Some Applications in Asymmetric Organometallic Catalysis ChemInform, 2005, 36, no.	0.0	0
46	C2-Symmetric Fluorous Diamines and Diimines as Ligands for Metal-Catalyzed Asymmetric Cyclopropanation of Styrene Chemlnform, 2005, 36, no.	0.0	0
47	Phase‶ransfer Catalysis in Environmentally Benign Reaction Media. , 2004, , 1042-1052.		1
48	A Catalytic Langmuir Film as a Model for Heterogeneous and Homogeneous Catalytic Processes. Angewandte Chemie - International Edition, 2004, 43, 6174-6177.	13.8	23
49	New Perfluoroalkyl-Substituted Bisoxazolines as Chiral Ligands in Asymmetric Cull-Catalyzed Reactions. European Journal of Organic Chemistry, 2004, 2004, 2669-2673.	2.4	28
50	C2-Symmetric Fluorous Diamines and Diimines as Ligands for Metal-Catalysed Asymmetric Cyclopropanation of Styrene. European Journal of Organic Chemistry, 2004, 2004, 4545-4551.	2.4	22
51	Fluorous Biphasic Hydrolytic Kinetic Resolution of Terminal Epoxides ChemInform, 2004, 35, no.	0.0	0
52	Poly(ethylene glycol)-Supported TEMPO: An Efficient, Recoverable Metal-Free Catalyst for the Selective Oxidation of Alcohols ChemInform, 2004, 35, no.	0.0	0
53	Synthesis and Catalytic Activity of a Fluorous-Tagged TEMPO Radical ChemInform, 2004, 35, no.	0.0	0
54	Enantiopure fluorous amino-derivatives: synthesis and some applications in asymmetric organometallic catalysis. Tetrahedron: Asymmetry, 2004, 15, 2633-2640.	1.8	11

#	Article	IF	CITATIONS
55	Synthesis and catalytic activity of a fluorous-tagged TEMPO radical. Tetrahedron Letters, 2004, 45, 4249-4251.	1.4	27
56	Fluorous biphasic hydrolytic kinetic resolution of terminal epoxides. Journal of Fluorine Chemistry, 2004, 125, 175-180.	1.7	35
57	NMR relaxometric study of new GdIII macrocyclic complexes and their interaction with human serum albumin. Organic and Biomolecular Chemistry, 2004, 2, 570.	2.8	34
58	Poly(ethylene glycol)-Supported TEMPO:  An Efficient, Recoverable Metal-Free Catalyst for the Selective Oxidation of Alcohols. Organic Letters, 2004, 6, 441-443.	4.6	139
59	Synthesis of Perfluoroalkyl-Substituted Bis(oxazolines) as Ligands for Catalytic Enantioselective Reactions. European Journal of Organic Chemistry, 2003, 2003, 1191-1197.	2.4	38
60	Poly(ethylene glycol)-Supported Tetrahydroxyphenyl Porphyrin: A Convenient, Recyclable Catalyst for Photooxidation Reactions ChemInform, 2003, 34, no.	0.0	0
61	Synthesis of Poly(ethylene glycol)-Supported Manganese Porphyrins: Efficient, Recoverable and Recyclable Catalysts for Epoxidation of Alkenes ChemInform, 2003, 34, no.	0.0	0
62	Synthesis of Perfluoroalkyl-Substituted Bis(oxazolines) as Ligands for Catalytic Enantioselective Reactions ChemInform, 2003, 34, no.	0.0	0
63	Chiral Fluorous Phosphorus Ligands Based on the Binaphthyl Skeleton: Synthesis and Applications in Asymmetric Catalysis ChemInform, 2003, 34, no.	0.0	0
64	Fluorous chiral ligands for novel catalytic systems. Coordination Chemistry Reviews, 2003, 242, 115-124.	18.8	59
65	Chiral fluorous phosphorus ligands based on the binaphthyl skeleton: synthesis and applications in asymmetric catalysis. Tetrahedron: Asymmetry, 2003, 14, 2215-2224.	1.8	44
66	Synthesis of poly(ethylene glycol)-supported manganese porphyrins: efficient, recoverable and recyclable catalysts for epoxidation of alkenes. Organic and Biomolecular Chemistry, 2003, 1, 454-456.	2.8	34
67	Poly(ethylene glycol)-Supported Tetrahydroxyphenyl Porphyrin:  A Convenient, Recyclable Catalyst for Photooxidation Reactions. Organic Letters, 2002, 4, 4229-4232.	4.6	69
68	Synthesis of a Family of Triarylphosphanes with Fluorous Phase Affinity. European Journal of Organic Chemistry, 2002, 2002, 269-275.	2.4	23
69	Chiral fluorous catalysts: synthesis and purposes. Journal of Molecular Catalysis A, 2002, 182-183, 455-461.	4.8	15
70	Hydrolytic kinetic resolution of terminal epoxides catalyzed by fluorous chiral Co(salen) complexes. Tetrahedron, 2002, 58, 3943-3949.	1.9	70
71	Asymmetric hydrogen transfer reduction of ketones using chiral perfluorinated diimines and diamines. Tetrahedron, 2002, 58, 3971-3976.	1.9	48
72	A convenient access to (F-alkyl)alkanals. Tetrahedron Letters, 2002, 43, 6141-6143.	1.4	19

#	Article	IF	CITATIONS
73	Asymmetric Hydrogen Transfer Reduction of Ketones Using Chiral Perfluorinated Diimines and Diamines ChemInform, 2002, 33, 32-32.	0.0	O
74	A New Polytopic Bis-diazacrown-ether-polypyridine Ligand and Its Complexes with Zn(II) Salts and Mononuclear and Dendritic Ru(II) Precursors. Synthesis, Absorption Spectra, Redox Behavior, and Luminescence Properties. Inorganic Chemistry, 2001, 40, 6901-6909.	4.0	31
75	Palladium-catalysed asymmetric allylic alkylation in the presence of a chiral â€~light fluorous' phosphine ligand. Chemical Communications, 2001, , 1220-1221.	4.1	36
76	Fluorous Biphasic Catalytic Oxidation of Sulfides by Molecular Oxygen/2,2-Dimethylpropanal. European Journal of Organic Chemistry, 2001, 2001, 181-186.	2.4	43
77	Synthesis, Photophysical Properties, and Complexation Behavior of Three New Luminescent Tetraaza-tetraoxamacrobicyclic Receptors. European Journal of Organic Chemistry, 2001, 2001, 587-594.	2.4	3
78	Asymmetric Epoxidation of Alkenes in Fluorinated Media, Catalyzed by Second-Generation Fluorous Chiral (Salen)manganese Complexes. European Journal of Organic Chemistry, 2001, 2001, 4639.	2.4	56
79	Asymmetric hydrogen transfer reduction of ketones using chiral perfluorinated ligands. Tetrahedron: Asymmetry, 2000, 11, 2881-2884.	1.8	39
80	Second-generation fluorous chiral (salen) manganese complexes. Chemical Communications, 2000, , 2171-2172.	4.1	52
81	Synthesis of perfluoroalkylated bipyridines — New ligands for oxidation reactions under fluorous triphasic conditions. Tetrahedron Letters, 1999, 40, 3647-3650.	1.4	64
82	Palladium-catalyzed heck reaction in perfluorinated solvents. Tetrahedron Letters, 1999, 40, 7683-7686.	1.4	74
83	Ditopic receptors capable of hydrogen bonding: Synthesis and complexation behaviour of diaza crown-ethers having melamine sidearms. Tetrahedron, 1999, 55, 10487-10496.	1.9	12
84	A convenient access to triarylphosphines with fluorous phase affinity. Tetrahedron Letters, 1999, 40, 849-852.	1.4	59
85	Enantioselective Catalysis in Fluorinated Media – Synthesis and Properties of Chiral Perfluoroalkylated (Salen)manganese Complexes. European Journal of Organic Chemistry, 1999, 1999, 1947-1955.	2.4	68
86	Spectroscopic characterization of fluorinated/hydrogenated mixed vesicles containing fluorinated Mn(III)-porphyrin. Inorganica Chimica Acta, 1998, 272, 274-282.	2.4	8
87	Palladium(0)-catalyzed substitution of allylic substrates in perfluorinated solvents. Tetrahedron Letters, 1998, 39, 9439-9442.	1.4	61
88	[2.2]-para-Cyclophane-4-carbaldehyde as building-block for chiral ligands. Journal of Molecular Catalysis A, 1998, 136, 13-22.	4.8	16
89	Efficient aerobic epoxidation of alkenes in perfluorinated solvents catalysed by chiral (salen) Mn complexes. Chemical Communications, 1998, , 877-878.	4.1	117
90	Epoxidation of Olefins by Molecular Oxygen Using Perfluorocarbons as Reaction Media. Synthetic Communications, 1997, 27, 447-452.	2.1	24

#	Article	IF	CITATIONS
91	Cobalt tetraarylporphyrin-catalysed epoxidation of alkenes by dioxygen and 2-methylpropanal under fluorous biphasic conditions. Chemical Communications, 1997, , 69-70.	4.1	88
92	Epoxidation of Alkenes Under Liquid-Liquid Biphasic Conditions: Synthesis and Catalytic Activity of Mn(III)-Tetraarylporphyrins Bearing Perfluoroalkyl Tails Tetrahedron, 1997, 53, 6145-6162.	1.9	41
93	Metal Complexes of a Tetraazacyclotetradecane Bearing Highly Fluorinated Tails: New Catalysts for the Oxidation of Hydrocarbons under Fluorous Biphasic Conditions. Tetrahedron Letters, 1997, 38, 7605-7608.	1.4	80
94	Einkettige Polyprenylphosphate bilden primitive Membranen. Angewandte Chemie, 1996, 108, 190-192.	2.0	6
95	Di(polyprenyl) Phosphates as Models for Primitive Membrane Constituents: Synthesis and Phase Properties. Chemistry - A European Journal, 1996, 2, 789-799.	3.3	26
96	Single-Chain Polyprenyl Phosphates Form"Primitive―Membranes. Angewandte Chemie International Edition in English, 1996, 35, 177-180.	4.4	58
97	Towards epoxidation catalysts for fluorous biphase systems: Synthesis and properties of two Mn(III)-tetraarylporphyrins bearing perfluoroalkylamido tails. Tetrahedron, 1996, 52, 11879-11888.	1.9	50
98	Synthesis of chiral Mn(III)-meso-tetrakis-[2.2]-p-cyclophanyl-porphyrin: a new catalyst for enantioselective epoxidation. Journal of Molecular Catalysis A, 1996, 113, 77-86.	4.8	48
99	Mn(III)-tetraarylporphyrins bearing covalently bonded crown-ethers: synthesis and catalytic activity in 1-dodecene epoxidation promoted by aqueous HOClOClâ^. Journal of Molecular Catalysis A, 1996, 113, 369-377.	4.8	6
100	Reinforcing effect of polyterpenoids on polyprenyl phosphate monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 103, 183-194.	4.7	15
101	Dimeric Mn(III)-tetraarylporphyrins as catalysts for H2O2-promoted olefin epoxidation Tetrahedron, 1994, 50, 9025-9036.	1.9	15
102	Oxygenation Reactions under Two-Phase Conditions. Catalysis By Metal Complexes, 1994, , 149-173.	0.6	7
103	A study on the solution and gas-phase chemistry of Mn(III) and Fe(III) tetraarylporphyrin complexes by fast-atom bombardment mass spectrometry. Journal of the American Society for Mass Spectrometry, 1993, 4, 249-254.	2.8	7
104	A study on the solution and gas-phase chemistry of Mn(III) and Fe(III) tetraarylporphyrin complexes by fast-atom bombardment mass spectrometry. Journal of the American Society for Mass Spectrometry, 1993, 4, 255-258.	2.8	5
105	Mn(III) bis-porphyrins as catalysts in H2O2 alkene epoxidations in the presence of a lipophilic bidentate imidazole ligand. Rendiconti Lincei, 1993, 4, 207-212.	2.2	4
106	Tailed Mn III -tetraarylporphyrins bearing an axial ligand and/or a carboxylic group: self-consistent catalysts for H2O2 or NaOCl alkene epoxidation. Journal of the Chemical Society Perkin Transactions 1, 1993, , 1345.	0.9	43
107	Biomimetic models of cytochrome P-450. A doubly tailed manganese(III)–tetraaryl porphyrin; an extremely efficient catalyst for hydrocarbon oxygenations promoted by 30% H2O2. Journal of the Chemical Society Chemical Communications, 1991, , 1285-1287.	2.0	35
108	One-Pot Conversion of Allylic Nitro Compounds into Nitriles with Carbon Disulphide Under Phase-Transfer Catalysis Conditions. Synthetic Communications, 1990, 20, 965-971.	2.1	19

#	Article	IF	CITATIONS
109	Chapter 6. Fluorous Catalysts. RSC Green Chemistry, 0, , 159-205.	0.1	0