Yosio Edemir Shimabukuro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3099096/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14637-14641.	3.3	780
2	Amazon rainforests green-up with sunlight in dry season. Geophysical Research Letters, 2006, 33, .	1.5	631
3	Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1341-1346.	3.3	462
4	Spatial patterns and fire response of recent Amazonian droughts. Geophysical Research Letters, 2007, 34, .	1.5	399
5	Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Applied Geography, 2015, 58, 116-127.	1.7	330
6	The Incidence of Fire in Amazonian Forests with Implications for REDD. Science, 2010, 328, 1275-1278.	6.0	254
7	Remote Sensing of Forest Biophysical Structure Using Mixture Decomposition and Geometric Reflectance Models. , 1995, 5, 993-1013.		222
8	Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecology Letters, 2012, 15, 1406-1414.	3.0	180
9	Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nature Communications, 2014, 5, 3434.	5.8	169
10	Analysis and optimization of the MODIS leaf area index algorithm retrievals over broadleaf forests. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43, 1855-1865.	2.7	161
11	Mapping tree species in tropical seasonal semi-deciduous forests with hyperspectral and multispectral data. Remote Sensing of Environment, 2016, 179, 66-78.	4.6	130
12	Spectral unmixing. International Journal of Remote Sensing, 2012, 33, 5307-5340.	1.3	128
13	Analyzing the agricultural transition in Mato Grosso, Brazil, using satellite-derived indices. Applied Geography, 2012, 32, 702-713.	1.7	120
14	Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149, 119-131.	4.9	119
15	Land use and land cover changes determine the spatial relationship between fire and deforestation in the Brazilian Amazon. Applied Geography, 2012, 34, 239-246.	1.7	114
16	Comparing annual MODIS and PRODES forest cover change data for advancing monitoring of Brazilian forest cover. Remote Sensing of Environment, 2008, 112, 3784-3793.	4.6	100
17	Rapid Assessment of Annual Deforestation in the Brazilian Amazon Using MODIS Data. Earth Interactions, 2005, 9, 1-22.	0.7	98
18	Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145, 362-377.	4.9	91

#	Article	IF	CITATIONS
19	Effects of climate and landâ€use change scenarios on fire probability during the 21st century in the Brazilian Amazon. Global Change Biology, 2019, 25, 2931-2946.	4.2	87
20	Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Science Advances, 2020, 6, .	4.7	82
21	Digital processing of a Landsat-TM time series for mapping and monitoring degraded areas caused by independent gold miners, Roraima State, Brazilian Amazon. Remote Sensing of Environment, 2002, 79, 42-50.	4.6	76
22	Linear mixing model applied to coarse spatial resolution data from multispectral satellite sensors. International Journal of Remote Sensing, 1993, 14, 2231-2240.	1.3	73
23	Multiâ€ŧemporal analysis of MODIS data to classify sugarcane crop. International Journal of Remote Sensing, 2006, 27, 755-768.	1.3	72
24	Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nature Sustainability, 2019, 2, 764-772.	11.5	71
25	Spectral linear mixing model in low spatial resolution image data. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43, 2555-2562.	2.7	69
26	Assessing the extent of agriculture/pasture and secondary succession forest in the Brazilian Legal Amazon using SPOT VEGETATION data. Remote Sensing of Environment, 2006, 101, 283-298.	4.6	67
27	Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+. Carbon Balance and Management, 2015, 10, 3.	1.4	66
28	Análise da composição florÃstica e fitossociológica da floresta nacional do Tapajós com o apoio geográfico de imagens de satélites. Acta Amazonica, 2005, 35, 155-173.	0.3	63
29	Disentangling the contribution of multiple land covers to fireâ€mediated carbon emissions in Amazonia during the 2010 drought. Global Biogeochemical Cycles, 2015, 29, 1739-1753.	1.9	63
30	Dynamic modeling of forest conversion: Simulation of past and future scenarios of rural activities expansion in the fringes of the Xingu National Park, Brazilian Amazon. International Journal of Applied Earth Observation and Geoinformation, 2011, 13, 435-446.	1.4	60
31	Landscape pattern and spatial variability of leaf area index in Eastern Amazonia. Forest Ecology and Management, 2005, 211, 240-256.	1.4	57
32	A comparison of sampling designs for estimating deforestation from Landsat imagery: A case study of the Brazilian Legal Amazon. Remote Sensing of Environment, 2009, 113, 2448-2454.	4.6	57
33	Predicting forest fire in the Brazilian Amazon using MODIS imagery and artificial neural networks. International Journal of Applied Earth Observation and Geoinformation, 2009, 11, 265-272.	1.4	55
34	Assessment of Deforestation in Near Real Time Over the Brazilian Amazon Using Multitemporal Fraction Images Derived From Terra MODIS. IEEE Geoscience and Remote Sensing Letters, 2005, 2, 315-318.	1.4	54
35	Climatic and anthropogenic drivers of northern Amazon fires during the 2015–2016 El Niño event. Ecological Applications, 2017, 27, 2514-2527.	1.8	49
36	Spatial validation of the collection 4 MODIS LAI product in eastern Amazonia. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43, 2526-2534.	2.7	48

#	Article	IF	CITATIONS
37	Estimating trace gas and aerosol emissions over South America: Relationship between fire radiative energy released and aerosol optical depth observations. Atmospheric Environment, 2009, 43, 6388-6397.	1.9	47
38	Benchmark maps of 33 years of secondary forest age for Brazil. Scientific Data, 2020, 7, 269.	2.4	46
39	Retrieving structural and chemical properties of individual tree crowns in a highly diverse tropical forest with 3D radiative transfer modeling and imaging spectroscopy. Remote Sensing of Environment, 2018, 211, 276-291.	4.6	45
40	Persistent effects of fragmentation on tropical rainforest canopy structure after 20Âyr of isolation. Ecological Applications, 2019, 29, e01952.	1.8	45
41	Mapping major land cover types and retrieving the age of secondary forests in the Brazilian Amazon by combining single-date optical and radar remote sensing data. Remote Sensing of Environment, 2017, 194, 16-32.	4.6	44
42	Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia. Biogeosciences, 2009, 6, 1883-1902.	1.3	40
43	Rapid Recent Deforestation Incursion in a Vulnerable Indigenous Land in the Brazilian Amazon and Fire-Driven Emissions of Fine Particulate Aerosol Pollutants. Forests, 2020, 11, 829.	0.9	40
44	Improving the spectral unmixing algorithm to map water turbidity Distributions. Environmental Modelling and Software, 2009, 24, 1051-1061.	1.9	38
45	Assessment of forest degradation in Brazilian Amazon due to selective logging and fires using time series of fraction images derived from Landsat ETM+ images. Remote Sensing Letters, 2014, 5, 773-782.	0.6	37
46	Forest dynamics and land-use transitions in the Brazilian Atlantic Forest: the case of sugarcane expansion. Regional Environmental Change, 2015, 15, 365-377.	1.4	36
47	Evaluation and Perspectives of Using Multitemporal L-Band SAR Data to Monitor Deforestation in the Brazilian AmazÔnia. IEEE Geoscience and Remote Sensing Letters, 2005, 2, 409-412.	1.4	33
48	Land-cover Mapping in the Brazilian Amazon Using SPOT-4 Vegetation Data and Machine Learning Classification Methods. Photogrammetric Engineering and Remote Sensing, 2006, 72, 897-910.	0.3	32
49	Large-scale heterogeneity of Amazonian phenology revealed from 26-year long AVHRR/NDVI time-series. Environmental Research Letters, 2013, 8, 024011.	2.2	32
50	Amazonian forest degradation must be incorporated into the COP26 agenda. Nature Geoscience, 2021, 14, 634-635.	5.4	32
51	Modelling fire probability in the Brazilian Amazon using the maximum entropy method. International Journal of Wildland Fire, 2016, 25, 955.	1.0	29
52	Consistency of vegetation index seasonality across the Amazon rainforest. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 42-53.	1.4	29
53	A Multi-Resolution Multi-Temporal Technique for Detecting and Mapping Deforestation in the Brazilian Amazon Rainforest. Remote Sensing, 2011, 3, 1943-1956.	1.8	27
54	Monitoring deforestation and forest degradation using multi-temporal fraction images derived from Landsat sensor data in the Brazilian Amazon. International Journal of Remote Sensing, 2019, 40, 5475-5496.	1.3	27

#	Article	IF	CITATIONS
55	Intercomparison of Burned Area Products and Its Implication for Carbon Emission Estimations in the Amazon. Remote Sensing, 2020, 12, 3864.	1.8	27
56	Evaluation of MODIS-based estimates of water-use efficiency in Amazonia. International Journal of Remote Sensing, 2017, 38, 5291-5309.	1.3	26
57	An integrated remote sensing and CIS approach for monitoring areas affected by selective logging: A case study in northern Mato Grosso, Brazilian Amazon. International Journal of Applied Earth Observation and Geoinformation, 2017, 61, 70-80.	1.4	26
58	Post-Fire Changes in Forest Biomass Retrieved by Airborne LiDAR in Amazonia. Remote Sensing, 2016, 8, 839.	1.8	25
59	Monitoring the transport of biomass burning emission in South America. Atmospheric Pollution Research, 2011, 2, 247-254.	1.8	24
60	Fire risk assessment in the Brazilian Amazon using MODIS imagery and change vector analysis. Applied Geography, 2011, 31, 76-84.	1.7	23
61	Estimating Burned Area in Mato Grosso, Brazil, Using an Object-Based Classification Method on a Systematic Sample of Medium Resolution Satellite Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 4502-4508.	2.3	23
62	Fraction Images Derived from Landsat TM and MSS Data for Monitoring Reforested Areas. Canadian Journal of Remote Sensing, 1995, 21, 67-74.	1.1	22
63	Ãndices de vegetação Modis aplicados na discriminação de áreas de soja. Pesquisa Agropecuaria Brasileira, 2012, 47, 1317-1326.	0.9	22
64	Effects of landâ€cover changes on the partitioning of surface energy and water fluxes in <scp>Amazonia</scp> using highâ€resolution satellite imagery. Ecohydrology, 2019, 12, e2126.	1.1	21
65	Detecção de cicatrizes de Ãjreas queimadas baseada no modelo linear de mistura espectral e imagens Ãndice de vegetação utilizando dados multitemporais do sensor MODIS/TERRA no estado do Mato Grosso, Amazônia brasileira. Acta Amazonica, 2005, 35, 445-456.	0.3	20
66	Impacts of Land Use and Land Cover Changes on Sediment Yield in a Brazilian Amazon Drainage Basin. GIScience and Remote Sensing, 2008, 45, 443-453.	2.4	20
67	Use of MODIS Sensor Images Combined with Reanalysis Products to Retrieve Net Radiation in Amazonia. Sensors, 2016, 16, 956.	2.1	20
68	Imagens de sensoriamento remoto no monitoramento da colheita da cana-de-açúcar. Engenharia Agricola, 2009, 29, 440-451.	0.2	19
69	Linear Spectral Mixing Model for Identifying Potential Missing Endmembers in Spectral Mixture Analysis. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 3005-3012.	2.7	19
70	Seasonality of vegetation types of South America depicted by moderate resolution imaging spectroradiometer (MODIS) time series. International Journal of Applied Earth Observation and Geoinformation, 2018, 69, 148-163.	1.4	19
71	Spectral mixture analysis of inland tropical waters. International Journal of Remote Sensing, 1994, 15, 1351-1356.	1.3	18
72	Fraction images for monitoring intra-annual phenology of different vegetation physiognomies in Amazonia. International Journal of Remote Sensing, 2011, 32, 387-408.	1.3	18

#	Article	IF	CITATIONS
73	3D Façade Labeling over Complex Scenarios: A Case Study Using Convolutional Neural Network and Structure-From-Motion. Remote Sensing, 2018, 10, 1435.	1.8	17
74	Mapping Burned Areas of Mato Grosso State Brazilian Amazon Using Multisensor Datasets. Remote Sensing, 2020, 12, 3827.	1.8	17
75	Assessing Land Use and Land Cover Changes in the Direct Influence Zone of the Braço Norte Hydropower Complex, Brazilian Amazonia. Forests, 2020, 11, 988.	0.9	16
76	Soybean yield estimation by an agrometeorological model in a GIS. Scientia Agricola, 2003, 60, 433-440.	0.6	15
77	Analysis and Assessment of the Spatial and Temporal Distribution of Burned Areas in the Amazon Forest. Remote Sensing, 2014, 6, 8002-8025.	1.8	15
78	Carbon Dynamics in a Human-Modified Tropical Forest: A Case Study Using Multi-Temporal LiDAR Data. Remote Sensing, 2020, 12, 430.	1.8	15
79	Estudo da dinâmica espaço-temporal do bioma Pantanal por meio de imagens MODIS. Pesquisa Agropecuaria Brasileira, 2008, 43, 1371-1378.	0.9	14
80	Analyzing the spectral variability of tropical tree species using hyperspectral feature selection and leaf optical modeling. Journal of Applied Remote Sensing, 2013, 7, 073502.	0.6	14
81	Pre-stratified modelling plus residuals kriging reduces the uncertainty of aboveground biomass estimation and spatial distribution in heterogeneous savannas and forest environments. Forest Ecology and Management, 2019, 445, 96-109.	1.4	14
82	Retrieving Secondary Forest Aboveground Biomass from Polarimetric ALOS-2 PALSAR-2 Data in the Brazilian Amazon. Remote Sensing, 2019, 11, 59.	1.8	14
83	A new 500-m resolution map of canopy height for Amazon forest using spaceborne LiDAR and cloud-free MODIS imagery. International Journal of Applied Earth Observation and Geoinformation, 2015, 43, 92-101.	1.4	13
84	An Adaptive Semisupervised Approach to the Detection of User-Defined Recurrent Changes in Image Time Series. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 3707-3719.	2.7	12
85	Improved tree height estimation of secondary forests in the Brazilian Amazon. Acta Amazonica, 2018, 48, 179-190.	0.3	12
86	Reducing the effects of vegetation phenology on change detection in tropical seasonal biomes. GIScience and Remote Sensing, 2019, 56, 699-717.	2.4	12
87	Discriminating Land Use and Land Cover Classes in Brazil Based on the Annual PROBA-V 100Âm Time Series. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 3409-3420.	2.3	12
88	Comparative Analysis of the Global Forest/Non-Forest Maps Derived from SAR and Optical Sensors. Case Studies from Brazilian Amazon and Cerrado Biomes. Remote Sensing, 2021, 13, 367.	1.8	12
89	Utilização de dados MODIS para a detecção de queimadas na Amazônia. Acta Amazonica, 2008, 38, 77-84. 	0.3	12
90	Classificação de padrões de savana usando assinaturas temporais NDVI do sensor MODLS no Parque Nacional Chapada dos Veadeiros. Revista Brasileira De Geofisica, 2008, 26, 505-517.	0.2	11

#	Article	IF	CITATIONS
91	Using Remote Sensing Products for Environmental Analysis in South America. Remote Sensing, 2011, 3, 2110-2127.	1.8	11
92	Spatio-temporal variation in dry season determines the Amazonian fire calendar. Environmental Research Letters, 2021, 16, 125009.	2.2	11
93	Turbidity in the Amazon Floodplain Assessed Through a Spatial Regression Model Applied to Fraction Images Derived From MODIS/Terra. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46, 2895-2905.	2.7	9
94	Evaluation of a linear spectral mixture model and vegetation indices (NDVI and EVI) in a study of schistosomiasis mansoni and Biomphalaria glabrata distribution in the state of Minas Gerais, Brazil. Memorias Do Instituto Oswaldo Cruz, 2010, 105, 512-518.	0.8	9
95	Deforestation and land use and land cover changes in protected areas of the Brazilian Cerrado: impacts on the fire-driven emissions of fine particulate aerosols pollutants. Remote Sensing Letters, 2021, 12, 79-92.	0.6	9
96	Monitoring land cover in Acre State, western Brazilian Amazonia, using multitemporal remote sensing data. International Journal of Image and Data Fusion, 2010, 1, 325-335.	0.8	8
97	Vegetation Fraction Images Derived from PROBA-V Data for Rapid Assessment of Annual Croplands in Brazil. Remote Sensing, 2020, 12, 1152.	1.8	8
98	Identificação e mapeamento de áreas de milho na região sul do Brasil utilizando imagens MODIS. Engenharia Agricola, 2007, 27, 753-763.	0.2	8
99	Response to Comment on "The Incidence of Fire in Amazonian Forests with Implications for REDDâ€. Science, 2010, 330, 1627-1627.	6.0	7
100	Avaliação de áreas potenciais ao cultivo de biomassa para produção de energia e uma contribuição de sensoriamento remoto e sistemas de informações geográficas. Engenharia Agricola, 2011, 31, 607-620.	0.2	7
101	Fractal properties of forest fires in Amazonia as a basis for modelling pan-tropical burnt area. Biogeosciences, 2014, 11, 1449-1459.	1.3	7
102	Maximum Fraction Images Derived from Year-Based Project for On-Board Autonomy-Vegetation (PROBA-V) Data for the Rapid Assessment of Land Use and Land Cover Areas in Mato Grosso State, Brazil. Land, 2020, 9, 139.	1.2	7
103	Análise histórica das transformações da Floresta Amazônica em áreas agrÃcolas na Bacia do Rio Suia-Miçu. Sociedade & Natureza, 2008, 20, 5-24.	0.0	7
104	Automatic tree crown delineation in tropical forest using hyperspectral data. , 2014, , .		6
105	Analysis of Precipitation and Evapotranspiration in Atlantic Rainforest Remnants in Southeastern Brazil from Remote Sensing Data. , 0, , .		6
106	Determining a Threshold to Delimit the Amazonian Forests from the Tree Canopy Cover 2000 GFC Data. Sensors, 2019, 19, 5020.	2.1	6
107	Quad-pol advanced land observing satellite/phased array L-band synthetic aperture radar-2 (ALOS/PALSAR-2) data for modelling secondary forest above-ground biomass in the central Brazilian amazon. International Journal of Remote Sensing, 2021, 42, 4985-5009.	1.3	6
108	Validação do mapeamento de uma área de floresta tropical com o uso imagens de videografia aérea e dados de levantamento de campo. Revista Arvore, 2005, 29, 227-239.	0.5	6

#	Article	IF	CITATIONS
109	Mapping South America's Drylands through Remote Sensing—A Review of the Methodological Trends and Current Challenges. Remote Sensing, 2022, 14, 736.	1.8	6
110	Tropical land cover change detection with polarimetric SAR data. , 2010, , .		5
111	Multi-scale approach to estimating aboveground biomass in the Brazilian Amazon using Landsat and LiDAR data. International Journal of Remote Sensing, 2019, 40, 8635-8645.	1.3	5
112	Mapeamento do uso e da cobertura atual da terra para indicação de áreas disponÃveis para reservas legais: estudo em nove municÃpios da região Amazônica. Revista Arvore, 2003, 27, 871-877.	0.5	5
113	Discriminação da cobertura vegetal do Cerrado matogrossense por meio de imagens MODIS. Pesquisa Agropecuaria Brasileira, 2010, 45, 186-194.	0.9	4
114	REGIÕES HOMOGÊNEAS DE VEGETAÇÃ∱O UTILIZANDO A VARIABILIDADE DO NDVI. Ciencia Florestal, 2017, 27 883.	'0.1	4
115	Mapeamento da Vegetação da Caatinga a partir de Dados Ópticos de Observação da Terra – Oportunidades e Desafios. Revista Brasileira De Cartografia, 0, 72, 829-854.	0.1	4
116	Polarimetric signatures and classification of tropical land covers. , 2009, , .		3
117	Determinação e modelagem da taxa de consumo de biomassa queimada. Revista Brasileira De Meteorologia, 2012, 27, 13-22.	0.2	3
118	On the extent of fire-induced forest degradation in Mato Grosso, Brazilian Amazon, in 2000, 2005 and 2010. International Journal of Wildland Fire, 2016, 25, 129.	1.0	3
119	Legacy Effects Following Fire on Surface Energy, Water and Carbon Fluxes in Mature Amazonian Forests. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005833.	1.3	3
120	Spectral signature of leaves of amazon rainforest tree species. , 2010, , .		2
121	Validation of MODIS MCD45A1 product to identify burned areas in Acre State - Amazon forest. , 2012, , .		2
122	Automatic detection of burned areas in wetlands by remote sensing multitemporal images. , 2013, , .		2
123	Análise das mudanças dos parâmetros fÃsicos da superfÃcie derivados das queimadas no estado de Rondônia. Boletim De Ciencias Geodesicas, 2014, 20, 830-854.	0.2	2
124	Assessment of burned areas in Mato Grosso State, Brazil, from a systematic sample of medium resolution satellite imagery. , 2014, , .		2
125	Plant diversity in hedgerows amidst Atlantic Forest fragments. Acta Botanica Brasilica, 2015, 29, 239-243.	0.8	2
126	LINEAR SPECTRAL MIXING MODEL APPLIED IN IMAGES FROM PROBA-V SENSOR: A SPATIAL MULTIRESOLUTION APPROACH. RA'E GA - O Espaco Geografico Em Analise, 2019, 46, 48.	0.1	2

#	Article	IF	CITATIONS
127	Protecting Amazonia Should Focus on Protecting Indigenous, Traditional Peoples and Their Territories. Forests, 2022, 13, 16.	0.9	2
128	Linear spectral mixture model as a tool for monitoring deforestation and timber exploitation in the Brazilian Amazon. , 2003, , .		1
129	Mapping and monitoring land cover in Corumbiara area, Brazilian Amazônia, using JERS-1 SAR multitemporal data. , 2007, , .		1
130	Fraction images derived from EO-1 Hyperion multitemporal data for dry season green up analysis in Tapajós National Forest, Brazilian Amazonia. , 2009, , .		1
131	Using Gradient Pattern Analysis for land use and land cover change detection. , 2010, , .		1
132	Spectral variability of atlantic forest species. , 2013, , .		1
133	Methods to Evaluate Land-Atmosphere Exchanges in Amazonia Based on Satellite Imagery and Ground Measurements. , 2018, , .		1
134	Mapeamento da Vegetação do Cerrado – Uma Revisão das Iniciativas de Sensoriamento Remoto. Revista Brasileira De Cartografia, 0, 72, 1250-1274.	0.1	1
135	<title>NOAA-AVHRR image mosaics applied to vegetation identification</title> ., 2001, , .		0
136	Wavelets transform and Linear Spectral Mixture Model applied to MODIS time series for land cover change analysis. , 2007, , .		0
137	Biomass estimation of Pinus radiata (D. Don) stands in Northwestern Spain by unmixing CCD CBERS data. , 2009, , .		0
138	Mapping and monitoring land cover in Acre State, Brazilian Amazônia, using multitemporal remote sensing data. , 2009, , .		0
139	Estimation of instantaneous fire flaming and smoldering size to Amazon Rainforest. , 2012, , .		0
140	Spatial - Temporal pattern of forest regeneration in areas deforested in the Eastern Amazon. , 2012, , .		0
141	Residual information to estimate uncertainty and improve the spectral linear mixing model solution. , 2012, , .		0
142	Evaluation of multi-temporal ALOS/PALSAR for monitoring the Brazilian Amazon rainforest. , 2012, , .		0
143	A multidisciplinary approach for assessing forest degradation in the Brazilian Amazon. , 2015, , .		0
144	Gross primary productivity in the northern region of Para state, Brazilian Amazon, from MOD17 data. , 2017, , .		0

#	Article	IF	CITATIONS
145	A Simplified 3D Radiative Transfer Approach for the Retrieval of Chemical and Structural Properties of Individual Tree Crowns from Hyperspectral Data. , 2018, , .		0
146	Comparison of Polarimetric Filters to Retrieve Forest Biomass. , 2021, , .		0
147	O uso da energia radiativa do fogo para estimar as emissões de queimadas para a América do Sul. Revista Brasileira De Geofisica, 2010, 28, 155-164.	0.2	0
148	Fraction Images Applications. Springer Remote Sensing/photogrammetry, 2019, , 51-67.	0.4	0
149	Modelo Linear de Mistura Espectral: Conceitos Teóricos, Algoritmos e Aplicações em Estudos na Amazônia Legal. Revista Brasileira De Cartografia, 0, 72, 1140-1169.	0.1	0
150	Assessment of Spatial and Temporal Distribution of Clouds in Northeast Brazil (2000 -2019) using MODIS Data. Revista Brasileira De Cartografia, 2020, 72, 681-696.	0.1	0