Kyriaki Hatziagapiou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3098779/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biophysical Studies and In Vitro Effects of Tumor Cell Lines of Cannabidiol and Its Cyclodextrin Inclusion Complexes. Pharmaceutics, 2022, 14, 706.	4.5	9
2	An In Vitro Study of Saffron Carotenoids: The Effect of Crocin Extracts and Dimethylcrocetin on Cancer Cell Lines. Antioxidants, 2022, 11, 1074.	5.1	3
3	Ultra-Fast and Sensitive Screening for Antibodies against the SARS-CoV-2 S1 Spike Antigen with a Portable Bioelectric Biosensor. Chemosensors, 2022, 10, 254.	3.6	1
4	Gene Expression and Resistance to Glucocorticoid-Induced Apoptosis in Acute Lymphoblastic Leukemia: A Brief Review and Update. Current Drug Research Reviews, 2021, 12, 131-149.	1.4	5
5	Clinical Application of the Novel Cell-Based Biosensor for the Ultra-Rapid Detection of the SARS-CoV-2 S1 Spike Protein Antigen: A Practical Approach. Biosensors, 2021, 11, 224.	4.7	28
6	315â€Integrating saffron metabolomics into the treatment of pediatric cancers. , 2021, , .		0
7	316â€Integrating non psychoactive phytocannabinoids and their cyclodextrin inclusion complexes into the treatment of neuroblastoma. , 2021, , .		0
8	MYCN in Neuroblastoma: "Old Wine into New Wineskins― Diseases (Basel, Switzerland), 2021, 9, 78.	2.5	12
9	Early and Very Early CRIM19 and MCL1 Expression Are Correlated to Late Acquired Prednisolone Effects in a T-Cell Acute Leukemia Cell Line. Advances in Experimental Medicine and Biology, 2021, 1339, 147-160.	1.6	Ο
10	Angiotensin-Converting Enzyme 2 (ACE2) As a Novel Biorecognition Element in A Cell-Based Biosensor for the Ultra-Rapid, Ultra-Sensitive Detection of the SARS-CoV-2 S1 Spike Protein Antigen. Chemosensors, 2021, 9, 341.	3.6	6
11	The Non-Coding RNA GAS5 and Its Role in Tumor Therapy-Induced Resistance. International Journal of Molecular Sciences, 2020, 21, 7633.	4.1	29
12	Strategies for blood collection and optimization of the blood supply chain during the COVIDâ€19 pandemic in Greece. ISBT Science Series, 2020, 15, 386-392.	1.1	8
13	Inflammation and tissue homeostasis: the NF-κB system in physiology and malignant progression. Molecular Biology Reports, 2020, 47, 4047-4063.	2.3	24
14	The role of adiponectin, LEPTIN, and ghrelin in the progress and prognosis of childhood acute lymphoblastic leukemia. Leukemia and Lymphoma, 2019, 60, 2158-2169.	1.3	7
15	Computational Modelling in Epidemiological Dispersion Using Diffusion and Epidemiological Equations. International Journal of Reliable and Quality E-Healthcare, 2019, 8, 1-37.	1.1	Ο
16	Crocins: The Active Constituents of Crocus Sativus L. Stigmas, Exert Significant Cytotoxicity on Tumor Cells In Vitro. Current Cancer Therapy Reviews, 2019, 15, 225-234.	0.3	1
17	Antioxidant Properties of Crocus Sativus L. and Its Constituents and Relevance to Neurodegenerative Diseases; Focus on Alzheimer's and Parkinson's Disease. Current Neuropharmacology, 2019, 17, 377-402.	2.9	62
18	Computational analysis of Gefitinib and methylated-hydroxypropylated cyclodextrin inclusion		0

complexes for the treatment of childhood malignancies. , 2018, , .

#	Article	IF	CITATIONS
19	The Protective Role of Crocus Sativus L. (Saffron) Against Ischemia- Reperfusion Injury, Hyperlipidemia and Atherosclerosis: Nature Opposing Cardiovascular Diseases. Current Cardiology Reviews, 2018, 14, 272-289.	1.5	24
20	Enhanced Gefitinib Cytotoxicity in the Presence of Cyclodextrins: In-Vitro and Biophysical Studies Towards Potential Therapeutic Interventions for Cancer. Journal of Biomedical Nanotechnology, 2017, 13, 522-533.	1.1	11
21	Tumor-Suppressing Properties of Crocus sativus L.: Nature as an Anti-Cancer Agent. Critical Reviews in Oncogenesis, 2017, 22, 263-273.	0.4	4