
Anwar Sunna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3098209/publications.pdf Version: 2024-02-01

ANNAAD SUINNA

#	Article	IF	CITATIONS
1	Tunable lifetime multiplexing using luminescent nanocrystals. Nature Photonics, 2014, 8, 32-36.	15.6	652
2	Xylanolytic Enzymes from Fungi and Bacteria. Critical Reviews in Biotechnology, 1997, 17, 39-67.	5.1	482
3	Solid-binding peptides: smart tools for nanobiotechnology. Trends in Biotechnology, 2015, 33, 259-268.	4.9	148
4	Glycosyl hydrolases from hyperthermophiles. Extremophiles, 1997, 1, 2-13.	0.9	142
5	Prospecting for novel lipase genes using PCR a aThe GenBank accession number for the sequence reported in this paper is AF421484 Microbiology (United Kingdom), 2002, 148, 2283-2291.	0.7	113
6	Bioproducts From Euglena gracilis: Synthesis and Applications. Frontiers in Bioengineering and Biotechnology, 2019, 7, 108.	2.0	109
7	Facile Assembly of Functional Upconversion Nanoparticles for Targeted Cancer Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2016, 8, 11945-11953.	4.0	86
8	A gene encoding a novel extremely thermostable 1,4-β-xylanase isolated directly from an environmental DNA sample. Extremophiles, 2003, 7, 63-70.	0.9	81
9	Alicyclobacillus hesperidum sp. nov. and a related genomic species from solfataric soils of São Miguel in the Azores International Journal of Systematic and Evolutionary Microbiology, 2000, 50, 451-457.	0.8	79
10	Bioengineering Strategies for Protein-Based Nanoparticles. Genes, 2018, 9, 370.	1.0	78
11	Proteomic response of Euglena gracilis to heavy metal exposure – Identification of key proteins involved in heavy metal tolerance and accumulation. Algal Research, 2020, 45, 101764.	2.4	59
12	Identification of Bacillus kaustophilus, Bacillus thermocatenulatus and Bacillus Strain HSR as Members of Bacillus thermoleovorans. Systematic and Applied Microbiology, 1997, 20, 232-237.	1.2	56
13	Pseudomonas aeruginosa inhibits the growth of Scedosporium aurantiacum, an opportunistic fungal pathogen isolated from the lungs of cystic fibrosis patients. Frontiers in Microbiology, 2015, 6, 866.	1.5	52
14	A Gene Encoding a Novel Multidomain β-1,4-Mannanase from Caldibacillus cellulovorans and Action of the Recombinant Enzyme on Kraft Pulp. Applied and Environmental Microbiology, 2000, 66, 664-670.	1.4	48
15	Characterization of the xylanases from the new isolated thermophilic xylan-degrading Bacillus thermoleovorans strain K-3d and Bacillus flavothermus strain LB3A. FEMS Microbiology Letters, 2006, 148, 209-216.	0.7	47
16	A novel thermostable multidomain 1,4-β-xylanase from â€~Caldibacillus cellulovorans' and effect of its xylan-binding domain on enzyme activity. Microbiology (United Kingdom), 2000, 146, 2947-2955.	0.7	46
17	Developing Protein-Based Nanoparticles as Versatile Delivery Systems for Cancer Therapy and Imaging. Nanomaterials, 2019, 9, 1329.	1.9	44
18	The thermostabilizing domain, XynA, of Caldibacillus cellulovorans xylanase is a xylan binding domain. Biochemical Journal, 2000, 346, 583-586.	1.7	42

#	Article	IF	CITATIONS
19	Sequencing and Expression of a β-Mannanase Gene from the Extreme Thermophile Dictyoglomus thermophilum Rt46B.1, and Characteristics of the Recombinant Enzyme. Current Microbiology, 1999, 39, 351-357.	1.0	41
20	Optical Biosensors Based on Nitrogenâ€Doped Graphene Functionalized with Magnetic Nanoparticles. Advanced Materials Interfaces, 2016, 3, 1600590.	1.9	40
21	Versatile Platform for Nanoparticle Surface Bioengineering Based on SiO ₂ -Binding Peptide and Proteinaceous Barnase*Barstar Interface. ACS Applied Materials & Interfaces, 2018, 10, 17437-17447.	4.0	40
22	Smartphone detection of antibiotic resistance using convective PCR and a lateral flow assay. Sensors and Actuators B: Chemical, 2019, 298, 126849.	4.0	40
23	Tools and strategies for constructing cell-free enzyme pathways. Biotechnology Advances, 2019, 37, 91-108.	6.0	40
24	Identification of novel β-mannan- and β-glucan-binding modules: evidence for a superfamily of carbohydrate-binding modules. Biochemical Journal, 2001, 356, 791-798.	1.7	39
25	An innovative approach to bioremediation of mercury contaminated soils from industrial mining operations. Chemosphere, 2017, 184, 694-699.	4.2	35
26	A portable nucleic acid detection system using natural convection combined with a smartphone. Biosensors and Bioelectronics, 2019, 134, 68-75.	5.3	35
27	Cell-Free Biocatalysis for the Production of Platform Chemicals. Frontiers in Energy Research, 2020, 8, .	1.2	31
28	Growth and production of xylanolytic enzymes by the extreme thermophilic anaerobic bacterium Thermotoga thermarum. Applied Microbiology and Biotechnology, 1996, 45, 671-676.	1.7	30
29	Biochemical characterization of a recombinant thermoalkalophilic lipase and assessment of its substrate enantioselectivity. Enzyme and Microbial Technology, 2002, 31, 472-476.	1.6	30
30	A linker peptide with high affinity towards silica-containing materials. New Biotechnology, 2013, 30, 485-492.	2.4	30
31	Solid-binding peptides for immobilisation of thermostable enzymes to hydrolyse biomass polysaccharides. Biotechnology for Biofuels, 2017, 10, 29.	6.2	29
32	A comprehensive assessment of the biosynthetic pathways of ascorbate, α-tocopherol and free amino acids in Euglena gracilis var. saccharophila. Algal Research, 2017, 27, 140-151.	2.4	28
33	Identification of novel β-mannan- and β-glucan-binding modules: evidence for a superfamily of carbohydrate-binding modules. Biochemical Journal, 2001, 356, 791.	1.7	27
34	Immobilization of Pseudomonas sp. strain ADP: A stable inoculant for the bioremediation of atrazine. Applied Clay Science, 2012, 64, 90-93.	2.6	26
35	Modular organisation and functional analysis of dissected modular β-mannanase CsMan26 from Caldicellulosiruptor Rt8B.4. Applied Microbiology and Biotechnology, 2010, 86, 189-200.	1.7	23
36	Probing the Role of the Chloroplasts in Heavy Metal Tolerance and Accumulation in Euglena gracilis. Microorganisms, 2020, 8, 115.	1.6	23

#	Article	IF	CITATIONS
37	Nuclear transformation of the versatile microalga Euglena gracilis. Algal Research, 2019, 37, 178-185.	2.4	22
38	A novel framework for the cell-free enzymatic production of glucaric acid. Metabolic Engineering, 2020, 57, 162-173.	3.6	22
39	Comparative proteomics investigation of central carbon metabolism in Euglena gracilis grown under predominantly phototrophic, mixotrophic and heterotrophic cultivations. Algal Research, 2019, 43, 101638.	2.4	21
40	Characterization of the xylanolytic enzyme system of the extreme thermophilic anaerobic bacteria Thermotoga maritima, T. neapolitana, and T. thermarum. Comparative Biochemistry and Physiology A, Comparative Physiology, 1997, 118, 453-461.	0.7	20
41	Survival in Sterile Soil and Atrazine Degradation of <i>Pseudomonas</i> sp. Strain ADP Immobilized on Zeolite. Bioremediation Journal, 2014, 18, 309-316.	1.0	20
42	Molecular tools and applications of <i>Euglena gracilis</i> : From biorefineries to bioremediation. Biotechnology and Bioengineering, 2020, 117, 3952-3967.	1.7	20
43	Bioengineering a Light-Responsive Encapsulin Nanoreactor: A Potential Tool for <i>In Vitro</i> Photodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 7977-7986.	4.0	19
44	Rapid and specific duplex detection of methicillin-resistant <i>Staphylococcus aureus</i> genes by surface-enhanced Raman spectroscopy. Analyst, The, 2020, 145, 2789-2794.	1.7	18
45	High-resolution Crystal Structures of Caldicellulosiruptor Strain Rt8B.4 Carbohydrate-binding Module CBM27-1 and its Complex with Mannohexaose. Journal of Molecular Biology, 2004, 340, 543-554.	2.0	17
46	Application of an ELISA-type screen printed electrode-based potentiometric assay to the detection of Cryptosporidium parvum oocysts. Journal of Microbiological Methods, 2013, 95, 182-185.	0.7	16
47	Bioremediation of Industrial Pollutants by Insects Expressing a Fungal Laccase. ACS Synthetic Biology, 2022, 11, 308-316.	1.9	16
48	Biofunctionalization of silica-coated magnetic particles mediated by a peptide. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	14
49	Microwave pretreatment of paramylon enhances the enzymatic production of soluble β-1,3-glucans with immunostimulatory activity. Carbohydrate Polymers, 2018, 196, 339-347.	5.1	14
50	Experimental and theoretical tools to elucidate the binding mechanisms of solid-binding peptides. New Biotechnology, 2019, 52, 9-18.	2.4	13
51	Functionalized Upconversion Nanoparticles for Targeted Labelling of Bladder Cancer Cells. Biomolecules, 2019, 9, 820.	1.8	13
52	Alternative carbohydrate pathways – enzymes, functions and engineering. Critical Reviews in Biotechnology, 2020, 40, 895-912.	5.1	13
53	Smartphone technology facilitates point-of-care nucleic acid diagnosis: a beginner's guide. Critical Reviews in Clinical Laboratory Sciences, 2021, 58, 77-100.	2.7	13
54	The thermostabilizing domain, XynA, of Caldibacillus cellulovorans xylanase is a xylan binding domain. Biochemical Journal, 2000, 346, 583.	1.7	12

#	Article	IF	CITATIONS
55	A Novel Universal Detection Agent for Time-Gated Luminescence Bioimaging. Scientific Reports, 2016, 6, 27564.	1.6	12
56	Multifunctional luminescent nanofibres from Eu3+-doped La2O2SO4 with enhanced oxygen storage capability. Journal of Alloys and Compounds, 2017, 695, 202-207.	2.8	12
57	Efficient capture of pathogens with a zeolite matrix. Parasitology Research, 2013, 112, 2441-2452.	0.6	11
58	Biodegradation of Polymers at Temperatures up to 130°C. Journal of Macromolecular Science - Pure and Applied Chemistry, 1995, 32, 661-669.	1.2	10
59	Effect of Trichoderma reesei Proteinases on the Affinity of an Inorganic-Binding Peptide. Applied Biochemistry and Biotechnology, 2014, 173, 2225-2240.	1.4	9
60	A yeast intron as a translational terminator in a plasmid shuttle vector. FEMS Yeast Research, 2004, 4, 573-577.	1.1	8
61	Characterisation of the First Archaeal Mannonate Dehydratase from Thermoplasma acidophilum and Its Potential Role in the Catabolism of D-Mannose. Catalysts, 2019, 9, 234.	1.6	8
62	Cell-Free Enzymatic Conversion of Spent Coffee Grounds Into the Platform Chemical Lactic Acid. Frontiers in Bioengineering and Biotechnology, 2019, 7, 389.	2.0	8
63	Solid-Binding Peptides in Biomedicine. Advances in Experimental Medicine and Biology, 2017, 1030, 21-36.	0.8	7
64	Thermostable amylase from an aerobic, gram-negative, non-spore forming thermophilic bacterium. Biotechnology Letters, 1990, 12, 433-438.	1.1	6
65	Enzymology of Alternative Carbohydrate Catabolic Pathways. Catalysts, 2020, 10, 1231.	1.6	6
66	Linker-protein G mediated functionalization of polystyrene-encapsulated upconversion nanoparticles for rapid gene assay using convective PCR. Mikrochimica Acta, 2019, 186, 346.	2.5	5
67	Mixed-mode liquid chromatography for the rapid analysis of biocatalytic glucaric acid reaction pathways. Analytica Chimica Acta, 2019, 1066, 136-145.	2.6	4
68	Elucidating the Binding Mechanism of a Novel Silica-Binding Peptide. Biomolecules, 2020, 10, 4.	1.8	4
69	The Effect of Oligomerization on A Solid-Binding Peptide Binding to Silica-Based Materials. Nanomaterials, 2020, 10, 1070.	1.9	4
70	Universal Enzyme-Based Field Workflow for Rapid and Sensitive Quantification of Water Pathogens. Microorganisms, 2021, 9, 2367.	1.6	4
71	Solid-Binding Peptides: Immobilisation Strategies for Extremophile Biocatalysis in Biotechnology. Grand Challenges in Biology and Biotechnology, 2016, , 637-674.	2.4	1
72	Development of screening strategies for the identification of paramylon-degrading enzymes. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 769-781.	1.4	1

#	Article	IF	CITATIONS
73	Editorial Catalysts: Special Issue on Novel Enzyme and Whole-Cell Biocatalysts. Catalysts, 2020, 10, 1088.	1.6	1
74	Facile Production and Rapid Purification of Functional Recombinant Qβ Replicase Heterotetramer Complex. Applied Biochemistry and Biotechnology, 2013, 169, 651-659.	1.4	0
75	Engineering protein nanocages for targeted photodynamic therapy. New Biotechnology, 2018, 44, S10.	2.4	Ο
76	A platform technology for the bioconjugation of nanoparticles in cancer theranostics. New Biotechnology, 2018, 44, S56.	2.4	0