Subodh Kumar Sinha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/309791/publications.pdf

Version: 2024-02-01

26 papers 419 citations

933447 10 h-index 18 g-index

27 all docs

27 docs citations

27 times ranked

455 citing authors

#	Article	IF	CITATIONS
1	Molecular Characterization of GS2 and Fd-GOGAT Homeologues and Their Biased Response to Nitrogen Stress in Bread Wheat (Triticum aestivum L.). Journal of Plant Growth Regulation, 2022, 41, 2555-2569.	5.1	6
2	Differential response of rice genotypes to nitrogen availability is associated with the altered nitrogen metabolism and ionomic balance. Environmental and Experimental Botany, 2022, 198, 104847.	4.2	6
3	Physio-molecular traits of contrasting bread wheat genotypes associated with 15N influx exhibiting homeolog expression bias in nitrate transporter genes under different external nitrate concentrations. Planta, 2022, 255, 104.	3.2	5
4	Comparative RNA-Seq analysis unfolds a complex regulatory network imparting yellow mosaic disease resistance in mungbean [Vigna radiata (L.) R. Wilczek]. PLoS ONE, 2021, 16, e0244593.	2.5	31
5	Comparative Analysis of GS2 and Fd-GOGAT Genes in Cultivated Wheat and Their Progenitors Under N Stress. Plant Molecular Biology Reporter, 2021, 39, 520-545.	1.8	8
6	Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in India. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	29
7	Integration of Dual Stress Transcriptomes and Major QTLs from a Pair of Genotypes Contrasting for Drought and Chronic Nitrogen Starvation Identifies Key Stress Responsive Genes in Rice. Rice, 2021, 14, 49.	4.0	22
8	Genetic Dissection of Seedling Root System Architectural Traits in a Diverse Panel of Hexaploid Wheat through Multi-Locus Genome-Wide Association Mapping for Improving Drought Tolerance. International Journal of Molecular Sciences, 2021, 22, 7188.	4.1	20
9	Transcriptome Analysis Reveals Important Candidate Genes Related to Nutrient Reservoir, Carbohydrate Metabolism, and Defence Proteins during Grain Development of Hexaploid Bread Wheat and Its Diploid Progenitors. Genes, 2020, 11, 509.	2.4	12
10	Root architecture traits variation and nitrate-influx responses in diverse wheat genotypes under different external nitrogen concentrations. Plant Physiology and Biochemistry, 2020, 148, 246-259.	5.8	22
11	External Nitrogen and Carbon Source-Mediated Response on Modulation of Root System Architecture and Nitrate Uptake in Wheat Seedlings. Journal of Plant Growth Regulation, 2019, 38, 283-297.	5.1	13
12	Homeologue Specific Gene Expression Analysis of Two Vital Carbon Metabolizing Enzymes—Citrate Synthase and NADP-Isocitrate Dehydrogenase—from Wheat (Triticum aestivum L.) Under Nitrogen Stress. Applied Biochemistry and Biotechnology, 2019, 188, 569-584.	2.9	15
13	Transcriptome data of cultivated tetraploid and hexaploid wheat variety during grain development. Data in Brief, 2019, 22, 551-556.	1.0	4
14	Transcriptome Analysis of Two Rice Varieties Contrasting for Nitrogen Use Efficiency under Chronic N Starvation Reveals Differences in Chloroplast and Starch Metabolism-Related Genes. Genes, 2018, 9, 206.	2.4	65
15	Natural variation in root system architecture in diverse wheat genotypes grown under different nitrate conditions and root growth media. Theoretical and Experimental Plant Physiology, 2018, 30, 223-234.	2.4	20
16	Nitrogen stress induced changes in root system architecture (RSA) in diverse wheat (T. aestivum L.) genotypes at seedling stage. Journal of Cereal Research, 2018, 10, .	0.2	4
17	Biochemical Characterization of Building Block of Condensed Tannin in Faba Bean (<i>Vicia faba</i>) Tj ETQq1 1	. 0.78431 ²	1 rgBT /Overlo
18	Condensed tannin: a major anti-nutritional constituent of faba bean (Vicia faba L.). Horticulture International Journal, $2018, 2, .$	0.1	3

#	Article	IF	CITATIONS
19	Nitrogen Stress Leads to Induce Change in Expression of Genes for Nitrate Transporter in Wheat Genotypes. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 2991-3002.	0.1	1
20	Meta-analysis of potential miRNA in Triticum astivum reveals their genome biased association with different metabolisms EST based potential miRNA identification in wheat. , $2016, , .$		0
21	Nutritional and antinutritional attributes of faba bean (Vicia faba L.) germplasms growing in Bihar, India. Physiology and Molecular Biology of Plants, 2015, 21, 159-162.	3.1	31
22	Nitrate Starvation Induced Changes in Root System Architecture, Carbon:Nitrogen Metabolism, and miRNA Expression in Nitrogen-Responsive Wheat Genotypes. Applied Biochemistry and Biotechnology, 2015, 177, 1299-1312.	2.9	78
23	Evaluation of Genetic Diversity in Faba bean (Vicia faba L.) Genotypes using Seed Protein and Isozymes Electrophoresis. The National Academy of Sciences, India, 2014, 37, 303-309.	1.3	3
24	RNAi induced gene silencing in crop improvement. Physiology and Molecular Biology of Plants, 2010, 16, 321-332.	3.1	11
25	Structure of replication initiator protein unites diverse viruses causing tomato leaf curl disease (ToLCD). Plant Science, 2004, 166, 1063-1067.	3 . 6	8
26	Molecular Variability in the Replicase Gene of Viruses Causing Tomato Leaf Curl Disease in India. Journal of Plant Biochemistry and Biotechnology, 2004, 13, 43-46.	1.7	1