Barbara S Nikolajczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/309779/publications.pdf

Version: 2024-02-01

49 papers

3,313 citations

186209 28 h-index 223716 46 g-index

49 all docs 49 docs citations

49 times ranked 5445 citing authors

#	Article	IF	Citations
1	Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities. Nature Reviews Endocrinology, 2022, 18, 23-42.	4.3	56
2	Regulatory T Cells Control Effector T Cell Inflammation in Human Prediabetes. Diabetes, 2022, 71, 264-274.	0.3	8
3	Obesity alters pathology and treatment response in inflammatory disease. Nature, 2022, 604, 337-342.	13.7	93
4	The intersection of metformin and inflammation. American Journal of Physiology - Cell Physiology, 2021, 320, C873-C879.	2.1	48
5	Dysregulation of Systemic Immunity in Aging and Dementia. Frontiers in Cellular Neuroscience, 2021, 15, 652111.	1.8	61
6	Next steps in mechanisms of inflammaging. Autophagy, 2020, 16, 2285-2286.	4.3	2
7	Metformin Enhances Autophagy and Normalizes Mitochondrial Function to Alleviate Aging-Associated Inflammation. Cell Metabolism, 2020, 32, 44-55.e6.	7.2	321
8	Single-Cell Analysis of the Periodontal Immune Niche in Type 2 Diabetes. Journal of Dental Research, 2020, 99, 855-862.	2.5	8
9	Commentary on Camell et al., Aging Induces Nlrp3 Inflammasome Dependent Adipose B Cell Expansion to Impair Metabolic Homeostasis. Immunometabolism, 2020, 2, .	0.7	2
10	Fatty Acid Metabolites Combine with Reduced \hat{I}^2 Oxidation to Activate Th17 Inflammation in Human Type 2 Diabetes. Cell Metabolism, 2019, 30, 447-461.e5.	7.2	97
11	Tissue Immune Cells Fuel Obesity-Associated Inflammation in Adipose Tissue and Beyond. Frontiers in Immunology, 2019, 10, 1587.	2.2	197
12	Saturated Fatty Acid Activates T Cell Inflammation Through a Nicotinamide Nucleotide Transhydrogenase (NNT)-Dependent Mechanism. Biomolecules, 2019, 9, 79.	1.8	19
13	Origin of Th17 Cells in Type 2 Diabetes-Potentiated Periodontal Disease. Advances in Experimental Medicine and Biology, 2019, 1197, 45-54.	0.8	4
14	Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nature Immunology, 2018, 19, 1330-1340.	7.0	396
15	Inhibition of Ubc13-mediated Ubiquitination by GPS2 Regulates Multiple Stages of B Cell Development. Journal of Biological Chemistry, 2017, 292, 2754-2772.	1.6	30
16	Adaptive Immunity and Metabolic Health: Harmony Becomes Dissonant in Obesity and Aging. , 2017, 7, 1307-1337.		15
17	The Immune System in Obesity: Developing Paradigms Amidst Inconvenient Truths. Current Diabetes Reports, 2017, 17, 87.	1.7	32
18	BET bromodomain proteins and epigenetic regulation of inflammation: implications for type 2 diabetes and breast cancer. Cellular and Molecular Life Sciences, 2017, 74, 231-243.	2.4	24

#	Article	IF	CITATIONS
19	Type 1 diabetes alters lipid handling and metabolism in human fibroblasts and peripheral blood mononuclear cells. PLoS ONE, 2017, 12, e0188474.	1.1	10
20	Advances in the quantification of mitochondrial function in primary human immune cells through extracellular flux analysis. PLoS ONE, 2017, 12, e0170975.	1.1	61
21	B cells shed light on diminished vaccine responses in obesity. Obesity, 2016, 24, 551-551.	1.5	2
22	The impact of bariatric surgery on inflammation: quenching the fire of obesity?. Current Opinion in Endocrinology, Diabetes and Obesity, 2016, 23, 373-378.	1.2	32
23	Th17 cytokines differentiate obesity from obesityâ€associated type 2 diabetes and promote <scp>TNF</scp> α production. Obesity, 2016, 24, 102-112.	1.5	96
24	Lymphocyte roles in metabolic dysfunction: of men and mice. Trends in Endocrinology and Metabolism, 2015, 26, 91-100.	3.1	38
25	Comment on "The B Cell-Stimulatory Cytokines BLyS and APRIL Are Elevated in Human Periodontitis and Are Required for B Cell-Dependent Bone Loss in Experimental Murine Periodontitis.". Journal of Immunology, 2015, 195, 5099-5099.	0.4	1
26	B cells promote obesity-associated periodontitis and oral pathogen-associated inflammation. Journal of Leukocyte Biology, 2014, 96, 349-357.	1.5	33
27	Immune regulators of inflammation in obesity-associated type 2 diabetes and coronary artery disease. Current Opinion in Endocrinology, Diabetes and Obesity, 2014, 21, 330-338.	1.2	37
28	Immune Cells Link Obesity-associated Type 2 Diabetes and Periodontitis. Journal of Dental Research, 2014, 93, 346-352.	2.5	42
29	When diet and exercise are not enough, think immunomodulation. Molecular Aspects of Medicine, 2013, 34, 30-38.	2.7	11
30	B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5133-5138.	3.3	413
31	The Bidirectional Relationship between Metabolism and Immune Responses. Discoveries, 2013, 1, e6.	1.5	26
32	Discoveries: an innovative platform for publishing cutting-edge research discoveries in medicine, biology and chemistry. Discoveries, 2013, 1, e1.	1.5	1
33	The outliers become a stampede as immunometabolism reaches a tipping point. Immunological Reviews, 2012, 249, 253-275.	2.8	47
34	State of the union between metabolism and the immune system in type 2 diabetes. Genes and Immunity, 2011, 12, 239-250.	2.2	124
35	Elevated Proinflammatory Cytokine Production by a Skewed T Cell Compartment Requires Monocytes and Promotes Inflammation in Type 2 Diabetes. Journal of Immunology, 2011, 186, 1162-1172.	0.4	348
36	Human Schistosomiasis Is Associated with Endotoxemia and Toll-Like Receptor 2- and 4-Bearing B Cells. American Journal of Tropical Medicine and Hygiene, 2011, 84, 321-324.	0.6	51

#	Article	IF	CITATIONS
37	Toll-like receptors regulate B cell cytokine production in patients with diabetes. Diabetologia, 2010, 53, 1461-1471.	2.9	140
38	Differential regulation of TLR4 expression in human B cells and monocytes. Molecular Immunology, 2010, 48, 82-88.	1.0	51
39	B cells as under-appreciated mediators of non-auto-immune inflammatory disease. Cytokine, 2010, 50, 234-242.	1.4	39
40	TLR Cross-Talk Specifically Regulates Cytokine Production by B Cells from Chronic Inflammatory Disease Patients. Journal of Immunology, 2009, 183, 7461-7470.	0.4	84
41	Hyperactivated B cells in human inflammatory bowel disease. Journal of Leukocyte Biology, 2009, 86, 1007-1016.	1.5	63
42	B cells from periodontal disease patients express surface Toll-like receptor 4. Journal of Leukocyte Biology, 2009, 85, 648-655.	1.5	32
43	Dynamic Protein Associations Define Two Phases of IL- \hat{l}^2 Transcriptional Activation. Journal of Immunology, 2008, 181, 503-512.	0.4	39
44	Immunoglobulin kappa enhancers are differentially regulated at the level of chromatin structure. Molecular Immunology, 2007, 44, 3407-3415.	1.0	1
45	Changes in immunoglobulin–nucleoprotein complex structure mapped by chromatin immunoprecipitation. Molecular Immunology, 2006, 43, 1541-1548.	1.0	2
46	Regulation of cytokine transcription in the context of chromatin. Archivum Immunologiae Et Therapiae Experimentalis, 2006, 54, 299-305.	1.0	3
47	The Interleukin-1Î ² Gene Is Transcribed from a Poised Promoter Architecture in Monocytes. Journal of Biological Chemistry, 2006, 281, 9227-9237.	1.6	49
48	The Igκ3′ Enhancer Is Activated by Gradients of Chromatin Accessibility and Protein Association. Journal of Immunology, 2005, 174, 2834-2842.	0.4	22
49	Obesity and Fatty Acids Promote Mitochondrial Translocation of STAT3 Through ROS-Dependent Mechanisms. Frontiers in Aging, 0, 3, .	1.2	2