
Naoki Kagi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3097654/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environment International, 2018, 121, 51-56.	4.8	211
2	Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environmental Health and Preventive Medicine, 2020, 25, 66.	1.4	148
3	Indoor air quality for chemical and ultrafine particle contaminants from printers. Building and Environment, 2007, 42, 1949-1954.	3.0	132
4	Impact of climate and ambient air pollution on the epidemic growth during COVID-19 outbreak in Japan. Environmental Research, 2020, 190, 110042.	3.7	97
5	Prevalence and risk factors associated with nonspecific building-related symptoms in office employees in Japan: relationships between work environment, Indoor Air Quality, and occupational stress. Indoor Air, 2015, 25, 499-511.	2.0	65
6	Physicochemical risk factors for building-related symptoms in air-conditioned office buildings: Ambient particles and combined exposure to indoor air pollutants. Science of the Total Environment, 2018, 616-617, 1649-1655.	3.9	46
7	Effects of water-damaged homes after flooding: health status of the residents and the environmental risk factors. International Journal of Environmental Health Research, 2014, 24, 158-175.	1.3	45
8	Evaluating prevalence and risk factors of building-related symptoms among office workers: Seasonal characteristics of symptoms and psychosocial and physical environmental factors. Environmental Health and Preventive Medicine, 2017, 22, 38.	1.4	41
9	Indoor environmental conditions in urban and rural homes with older people during heating season: A case in cold region, China. Energy and Buildings, 2018, 167, 334-346.	3.1	38
10	Effects on air pollutant removal by plant absorption and adsorption. Building and Environment, 2005, 40, 105-112.	3.0	32
11	Primary pollutants in schoolchildren's homes in Wuhan, China. Building and Environment, 2015, 93, 41-53.	3.0	30
12	Survey of air exchange rates and evaluation of airborne infection risk of COVID-19 on commuter trains. Environment International, 2021, 157, 106774.	4.8	28
13	Indoor air quality and thermal comfort in temporary houses occupied after the Great East Japan Earthquake. Indoor Air, 2014, 24, 425-437.	2.0	25
14	Common SVOCs in house dust from urban dwellings with schoolchildren in six typical cities of China and associated non-dietary exposure and health risk assessment. Environment International, 2018, 120, 431-442.	4.8	25
15	Work productivity in the office and at home during the COVIDâ€19 pandemic: A crossâ€sectional analysis of office workers in Japan. Indoor Air, 2022, 32, .	2.0	24
16	Thermal and environmental conditions in Shanghai households: Risk factors for childhood health. Building and Environment, 2016, 104, 35-46.	3.0	22
17	Environmental conditions in homes with healthy and unhealthy schoolchildren in Beijing, China. Building and Environment, 2017, 112, 270-284.	3.0	19
18	Winter indoor environment of elderly households: A case of rural regions in northeast and southeast China. Building and Environment, 2019, 165, 106388.	3.0	19

ΝΑΟΚΙ ΚΑGΙ

#	Article	IF	CITATIONS
19	Measures against COVIDâ€19 concerning Summer Indoor Environment in Japan. Japan Architectural Review, 2020, 3, 423-434.	0.4	16
20	Indoor environmental problems and health status in water-damaged homes due to tsunami disaster in Japan. Building and Environment, 2015, 93, 24-34.	3.0	13
21	Field Survey on the Relation between IAQ and Occupants' Health in 40 Houses in Southern Taiwan. Journal of Asian Architecture and Building Engineering, 2011, 10, 249-256.	1.2	12
22	Field study on indoor health risk factors in households with schoolchildren in south-central China. Building and Environment, 2017, 117, 260-273.	3.0	10
23	Operation of airâ€conditioning and sanitary equipment for SARSâ€CoVâ€2 infectious disease control. Japan Architectural Review, 2021, 4, 608-620.	0.4	10
24	Investigation of Microclimate and Air Pollution in the Classrooms of a Primary School in Wuhan. Procedia Engineering, 2015, 121, 415-422.	1.2	9
25	Air exchange rates and advection–diffusion of CO ₂ and aerosols in a route bus for evaluation of infection risk. Indoor Air, 2022, 32, e13019.	2.0	9
26	SURVEY ON INDOOR AIRBORNE PARTICLE AND PM2.5 IN OFFICE BUILDINGS. AIJ Journal of Technology and Design, 2012, 18, 613-616.	0.1	7
27	Study of the different Cutoff Point of the QEESI Questionnaire as a Screening Tool for Sick Building Syndrome Diagnosis in Taiwan. Journal of Asian Architecture and Building Engineering, 2014, 13, 507-513.	1.2	7
28	Investigation of fungal contamination in urban houses with children in six major Chinese cities: Genus and concentration characteristics. Building and Environment, 2021, 205, 108229.	3.0	7
29	Concentration characteristics of gaseous carbonyl compounds in urban houses in two different climatic zones of China and health risk assessment for schoolchildren. Sustainable Cities and Society, 2020, 60, 102270.	5.1	7
30	ä»™å⁰å¸å†…ã®å¿œæ€¥ä»®è¨ä¼2å®…ã®æ¸©ç†±ç'°å¢fã®å®Ÿæ…‹ãïç'°å¢f改å−"ã«åʿãʿãŸæœj^. Journal of Enviro	onmolental E	En g ineering (
31	Microbial volatile organic compounds and dampness in 60 houses of East Japan. Building and Environment, 2018, 132, 338-344.	3.0	6
32	Indoor environment in children's dwellings in Dalian and Beijing, China. Science and Technology for the Built Environment, 2019, 25, 373-386.	0.8	4
33	ASSOCIATION BETWEEN ENVIRONMENTAL FACTORS AND OCCUPANT HEALTH IN TEMPORARY HOUSING BUILT AFTER THE GREAT EAST JAPAN EARTHQUAKE OF 2011: QUESTIONNAIRE SURVEY IN SENDAI AREA. Journal of Environmental Engineering (Japan), 2017, 82, 967-975.	0.1	4
34	SURVEY OF INDOOR AIR QUALITY BY MEASURING VOLATILE ORGANIC COMPOUNDS. Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 1997, 62, 65-70.	0.1	4
35	A STUDY ON INDOOR AIR ENVIRONMENT OF TEMPORARY HOUSES AFTER THE GREAT EAST JAPAN CALAMITY. Journal of Environmental Engineering (Japan), 2013, 78, 917-921.	0.1	3
36	INDOOR FUNGUS CONTAMINATION IN TEMPORARY HOUSES IN SENDAI CITY. All Journal of Technology and Design, 2016, 22, 615-620.	0.1	3

Ναοκι Κάςι

#	Article	IF	CITATIONS
37	Study on the mechanism of <scp>SVOC</scp> adsorption onto airborne particles in indoor air. Japan Architectural Review, 2018, 1, 528-537.	0.4	3
38	Secondary organic aerosol formation from p-dichlorobenzene under indoor environmental conditions. Building and Environment, 2020, 174, 106758.	3.0	3
39	FIELD INVESTIGATION ON INDOOR CHEMICAL POLLUTION IN TEMPORARY HOUSES IN SENDAI CITY. Journal of Environmental Engineering (Japan), 2016, 81, 979-985.	0.1	3
40	BASIC STUDY ON MECHANISM OF SVOC ADSORPTION ONTO AIRBORNE PARTICLES IN INDOOR AIR. Journal of Environmental Engineering (Japan), 2017, 82, 663-672.	0.1	3
41	A Study on Indoor Air Contaminants Related to Pets in Japanese Dwellings. Journal of Asian Architecture and Building Engineering, 2006, 5, 355-360.	1.2	2
42	RESEARCH ON THE BEHAVIOR AND CONTROL OF MICROBIAL CONTAMINATION IN AN AIR CONDITIONING SYSTEM. Journal of Environmental Engineering (Japan), 2008, 73, 1197-1200.	0.1	2
43	EXPERIMENT FOR MOISTURE CONDITION AFTER FLOODING IN A CRAWL SPACE USING TEST HOUSE. AIJ Journal of Technology and Design, 2015, 21, 1117-1120.	0.1	2
44	EVALUATION OF INFLUENCE OF RESIDENCE TIME AND SPECIFIC SURFACE AREA OF AIRBORNE PARTICLES IN INDOOR AIR ON DEHP ADSORPTION AND PREDICTION MODELING. Journal of Environmental Engineering (Japan), 2018, 83, 761-768.	0.1	2
45	INFLUENCE OF MOISTURE AGAINST GASEOUS ORGANIC COMPOUNDS EMITTED FROM BUILDING MATERIAL. Journal of Environmental Engineering (Japan), 2003, 68, 41-45.	0.1	2
46	AN ANALYSIS ON THE NONCONFORMITY RATES OF AIR ENVIRONMENT IN SPECIFIC BUILDINGS. Journal of Environmental Engineering (Japan), 2019, 84, 1011-1018.	0.1	2
47	THE ACTUAL CONDITION ELUCIDATION OF MICROBIOME IN A COOL OR HEAT PIT PART1: COMPARISON OF BACTERIAL FLORA BETWEEN INDOOR ENVIRONMENTS AND THE ENVIRONMENT IN A PIT. Journal of Environmental Engineering (Japan), 2020, 85, 259-266.	0.1	2
48	Indoor thermal environment during heating season and the health of elderly in China. Science and Technology for the Built Environment, 2022, 28, 843-863.	0.8	2
49	FIELD MEASURMENT OF VOLATILE ORGANIC COMPOUNDS IN OFFICE BUILDINGS BY PASSIVE SAMPLING AND INVESTIGATION FOR ITS SOURCE. Journal of Environmental Engineering (Japan), 2009, 74, 501-506.	0.1	1
50	DEHP ADSORPTION CHARACTERISTICS AND PREDICTIVE MODELING ONTO SETTLED DUST IN INDOOR ENVIRONMENTS. Journal of Environmental Engineering (Japan), 2021, 86, 167-174.	0.1	1
51	INVESTIGATION INTO INDOOR ENVIRONMENTS AND HOME DAMPNESS. Journal of Environmental Engineering (Japan), 2021, 86, 197-204.	0.1	1
52	EMISSION CHARACTERISTICS OF VOLATILE ORGANIC COMPOUNDS BY USING PARAMETER OF INTERNAL DIFFUSION AND MOISTURE WITHIN BUILDING MATERIALS. Journal of Environmental Engineering (Japan), 2004, 69, 25-30.	0.1	1
53	NATIONAL SURVEY ON HOME DAMPNESS AND CHILDREN ALLERGIC SYMPTOMS DURING CONSECUTIVE SURVEY PERIODS IN JAPAN. Journal of Environmental Engineering (Japan), 2018, 83, 1025-1032.	0.1	1
54	BASIC STUDY ON AIRBORNE ENDOTOXIN AND BACTERIAL CONCENTRATIONS. Journal of Environmental Engineering (Japan), 2018, 83, 581-588.	0.1	1

Ναοκι Κάςι

#	Article	IF	CITATIONS
55	SURVEY ON THE PRECISION OF INDOOR AIR QUALITY ANALYTICAL METHODS USING DNPH CARTRIDGE. AIJ Journal of Technology and Design, 2009, 15, 163-166.	0.1	0
56	ADSORPTION OF IONIC COMPOUNDS UNDER AN APPLIED ELECTRIC FIELD IN INDOOR ENVIRONMENTS. Journal of Environmental Engineering (Japan), 2009, 74, 347-352.	0.1	0
57	PROPOSAL OF THE SAMPLING METHODS FOR IONIC COMPOUNDS USING NON-EQUILIBRIUM SURFACE ADSORPTION BASED ON THE NEW PRINCIPLE. Journal of Environmental Engineering (Japan), 2010, 75, 197-203.	0.1	0
58	RESEARCH ON THE BEHAVIOR AND CONTROL OF MICROBIAL CONTAMINATION IN AN AIR CONDITIONING SYSTEM. Journal of Environmental Engineering (Japan), 2010, 75, 721-726.	0.1	0
59	DIFFERENCE OF INDOOR AIR QUALITY WITH VARIOUS SCALES OF OFFICE BUILDINGS. Journal of Environmental Engineering (Japan), 2011, 76, 43-48.	0.1	0
60	THE VALUATION METHOD OF THE MOULD MULTIPLICATION CHARACTERISTICS ON WOODEN MATERIAL. Journal of Environmental Engineering (Japan), 2013, 78, 589-593.	0.1	0
61	Optical measurement method for particles on printed substrate by light-scattering. Proceedings of SPIE, 2014, , .	0.8	0
62	FIELD INVESTIGATIGATION ON INDOOR AIR ENVIRONMENT OF TEMPORARY HOUSES IN ASO, KUMAMOTO. Journal of Environmental Engineering (Japan), 2016, 81, 319-326.	0.1	0
63	Study on Association between Cardiovascular Disease and Old People's Living Environment in Rural Shanghai in Winter. Procedia Engineering, 2017, 205, 2847-2854.	1.2	0
64	Field measurement of PM2.5 concentration in office buildings. E3S Web of Conferences, 2019, 111, 06064.	0.2	0
65	ULTRAFINE PARTICLE COLLECTION CHARACTERISTICS OF AIR-HANDLING UNIT AND AIR FILTER FOR BUILDING. Journal of Environmental Engineering (Japan), 2019, 84, 65-71.	0.1	0
66	Surface Corrosion of HDD Media and Subsidiary Particle Formation Due to SO2 Gas Adsorption. Journal of the IEST, 2007, 50, 38-51.	0.2	0
67	Abatement of VOCs by Atomizing Acrylamide Polyampholyte (APA) Solution using Spray Nozzles. Kagaku Kogaku Ronbunshu, 2014, 40, 306-312.	0.1	0
68	ASSESSMENT OF ENVIRONMENTAL FACTORS RELATED TO CEREBROVASCULAR DISEASE MORTALITY IN CHINA. AlJ Journal of Technology and Design, 2018, 24, 285-288.	0.1	0
69	EMISSION MECHANISMS OF VOC WITH GROWTH PROCESS OF FUNGUS AND EMISSION FROM HUMIDIFIER ELEMENT. Journal of Environmental Engineering (Japan), 2019, 84, 1003-1010.	0.1	0
70	EXPERIMENTAL STUDY FOR 2-ETHYL-1-HEXANOL EMISSION CHARACTERISTICS FROM FLOORING MATERIALS ON VARIOUS HUMIDITY CONDITIONS. Journal of Environmental Engineering (Japan), 2020, 85, 811-817.	0.1	0