Ewa BrzeziÅ, ska-BÅ, aszczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3097461/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Different effectiveness of fungal pathogen-associated molecular patterns (PAMPs) in activating rat peritoneal mast cells. Immunology Letters, 2022, 248, 7-15.	1.1	6
2	The impact of TLR7 agonist R848 treatment on mast cell phenotype and activity. Cellular Immunology, 2021, 359, 104241.	1.4	6
3	Mannan activates tissue native and IgE-sensitized mast cells to proinflammatory response and chemotaxis in TLR4-dependent manner. Journal of Leukocyte Biology, 2021, 109, 931-942.	1.5	13
4	Expression of Dopamine D1â^'4 and Serotonin 5-HT1A-3A Receptors in Blood Mononuclear Cells in Schizophrenia. Frontiers in Psychiatry, 2021, 12, 645081.	1.3	10
5	Analysis of IL-1β, CXCL8, and TNF-α levels in the crevicular fluid of patients with periodontitis or healthy implants. BMC Oral Health, 2021, 21, 120.	0.8	12
6	Native and IgE-primed rat peritoneal mast cells exert pro-inflammatory activity and migrate in response to yeast zymosan upon Dectin-1 engagement. Immunologic Research, 2021, 69, 176-188.	1.3	4
7	Understanding the immunopathology of SARS-CoV-2 infection - the key to successful COVID-19 therapy. Farmacja Polska, 2021, 77, 155-165.	0.1	1
8	Alarmins (IL-33, sST2, HMGB1, and S100B) as potential biomarkers for schizophrenia. Journal of Psychiatric Research, 2021, 138, 380-387.	1.5	28
9	Do Mast Cells Contribute to the Antifungal Host Defense?. Cells, 2021, 10, 2510.	1.8	3
10	Mast cell phenotypic plasticity and their activity under the influence of cathelicidin-related antimicrobial peptide (CRAMP) and IL-33 alarmins. Cellular Immunology, 2021, 369, 104424.	1.4	4
11	Systemic concentration of apelin, but not resistin or chemerin, is altered in patients with schizophrenia. Journal of Investigative Medicine, 2021, 69, 56-65.	0.7	0
12	Fungal β-glucans and mannan stimulate peripheral blood mononuclear cells to cytokine production in Syk-dependent manner. Immunobiology, 2020, 225, 151985.	0.8	7
13	The association between serum levels of TNF-α and IL-6 in schizophrenic patients and their metabolic status – A case control study. Journal of Neuroimmunology, 2020, 347, 577344.	1.1	10
14	The Art of Mast Cell Adhesion. Cells, 2020, 9, 2664.	1.8	15
15	β-Defensin Strengthens Antimicrobial Peritoneal Mast Cell Response. Journal of Immunology Research, 2020, 2020, 1-14.	0.9	5
16	The Response of Tissue Mast Cells to TLR3 Ligand Poly(I:C) Treatment. Journal of Immunology Research, 2020, 2020, 1-13.	0.9	8
17	The role of adipokines in the modulation of lymphoid lineage cell development and activity: An overview. Obesity Reviews, 2020, 21, e13055.	3.1	12
18	Curdlan stimulates tissue mast cells to synthesize pro-inflammatory mediators, generate ROS, and migrate via Dectin-1 receptor. Cellular Immunology, 2020, 351, 104079.	1.4	18

Ewa BrzeziÅ,,ska-BÅ,aszczyk

#	Article	IF	CITATIONS
19	Expression of Toll-like receptors 2 and 4 on peripheral mononuclear cells (PBMCs) after laparoscopic cholecystectomy. Scandinavian Journal of Clinical and Laboratory Investigation, 2019, 79, 449-454.	0.6	1
20	Adipocytokines leptin and adiponectin function as mast cell activity modulators. Immunology, 2019, 158, 3-18.	2.0	22
21	In vitro cytokine synthesis in unstimulated and mitogen-stimulated peripheral blood mononuclear cells from individuals with schizophrenia. Journal of Investigative Medicine, 2019, 67, 1053-1060.	0.7	1
22	The expression of toll-like receptors in peripheral blood mononuclear cells is altered in schizophrenia. Psychiatry Research, 2019, 272, 540-550.	1.7	19
23	Serum level of cathelicidin LL-37 is increased in euthymic patients with bipolar disorder irrespective of their cardio-metabolic status. Revista De Psiquiatria Clinica, 2019, 46, 66-71.	0.6	1
24	Presence of archaea and selected bacteria in infected root canal systems. Canadian Journal of Microbiology, 2018, 64, 317-326.	0.8	14
25	Mast cells participate in chronic lowâ€grade inflammation within adipose tissue. Obesity Reviews, 2018, 19, 686-697.	3.1	56
26	Body composition does not affect serum levels of cathelicidin LL-37 in elderly women with unipolar depression. Nordic Journal of Psychiatry, 2018, 72, 45-50.	0.7	1
27	Circulating cathelicidin LL-37 level is increased in euthymic patients with bipolar disorder. Journal of Clinical Neuroscience, 2018, 48, 168-172.	0.8	4
28	Serum concentrations of antimicrobial peptide cathelicidin LL-37 in patients with bacterial lung infections. Central-European Journal of Immunology, 2018, 43, 453-457.	0.4	22
29	Adipocytokine Involvement in Innate Immune Mechanisms. Journal of Interferon and Cytokine Research, 2018, 38, 527-538.	0.5	19
30	Leptin receptor is expressed by tissue mast cells. Immunologic Research, 2018, 66, 557-566.	1.3	15
31	Cathelicidin LL-37 Affects Surface and Intracellular Toll-Like Receptor Expression in Tissue Mast Cells. Journal of Immunology Research, 2018, 2018, 1-18.	0.9	31
32	Leptin stimulates tissue rat mast cell pro-inflammatory activity and migratory response. Inflammation Research, 2018, 67, 789-799.	1.6	17
33	Human cathelicidin LL-37 – Does it influence the homeostatic imbalance in mental disorders?. Journal of Biosciences, 2018, 43, 321-327.	0.5	4
34	The RLR/NLR expression and pro-inflammatory activity of tissue mast cells are regulated by cathelicidin LL-37 and defensin hBD-2. Scientific Reports, 2018, 8, 11750.	1.6	20
35	An overview of mast cell pattern recognition receptors. Inflammation Research, 2018, 67, 737-746.	1.6	62
36	Status of cathelicidin IL-37, cytokine TNF, and vitamin D in patients with pulmonary tuberculosis. Journal of Biological Regulators and Homeostatic Agents, 2018, 32, 321-325.	0.7	3

Ewa Brzezińska-BÅ,aszczyk

#	Article	IF	CITATIONS
37	Leukotriene receptor expression in mast cells is affected by their agonists. Cellular Immunology, 2017, 317, 37-47.	1.4	11
38	Serum levels of peptide cathelicidin LL-37 in elderly patients with depression. Psychiatry Research, 2017, 255, 156-160.	1.7	12
39	Evaluation of Metalloproteinase-8 Levels in Crevicular Fluid of Patients with Healthy Implants or Periodontitis. Mediators of Inflammation, 2017, 2017, 1-7.	1.4	11
40	Mast cells as the strength of the inflammatory process. Polish Journal of Pathology, 2017, 68, 187-196.	0.1	30
41	Circulating cathelicidin LL-37 in adult patients with pulmonary infectious diseases. Clinical and Investigative Medicine, 2017, 40, 34.	0.3	15
42	Serum level of cathelicidin LL-37 in patients with active tuberculosis and other infectious diseases. Journal of Biological Regulators and Homeostatic Agents, 2017, 31, 731-736.	0.7	9
43	Expression of surface and intracellular Toll-like receptors by mature mast cells. Central-European Journal of Immunology, 2016, 4, 333-338.	0.4	40
44	Endogenous antimicrobial factors in the treatment of infectious diseases. Central-European Journal of Immunology, 2016, 4, 419-425.	0.4	16
45	Cathelicidins and defensins regulate mast cell antimicrobial activity. Postepy Higieny I Medycyny Doswiadczalnej, 2016, 70, 618-636.	0.1	17
46	Expression of prostaglandin E 2 prostanoid receptor EP2 and interleukin-1βin laryngeal carcinoma – preliminary study. Wspolczesna Onkologia, 2015, 2, 113-119.	0.7	1
47	Expression of Th17 cell population regulatory cytokines in laryngeal carcinoma – Preliminary study. Wspolczesna Onkologia, 2015, 3, 195-200.	0.7	1
48	Clinical immunology Archaea prevalence in inflamed pulp tissues. Central-European Journal of Immunology, 2015, 2, 194-200.	0.4	19
49	Review paper Cathelicidin impact on inflammatory cells. Central-European Journal of Immunology, 2015, 2, 225-235.	0.4	147
50	Human-derived cathelicidin LL-37 directly activates mast cells to proinflammatory mediator synthesis and migratory response. Cellular Immunology, 2015, 293, 67-73.	1.4	43
51	Gene and protein expression of O-GlcNAc-cycling enzymes in human laryngeal cancer. Clinical and Experimental Medicine, 2015, 15, 455-468.	1.9	25
52	Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancer—the relationship with regulatory hypoxia-inducible factor-11̂± expression, tumor invasiveness, and patient prognosis. Tumor Biology, 2015, 36, 2309-2321.	0.8	62
53	The reactivity of the immune system in some psychiatric disorders. Psychiatria I Psychologia Kliniczna, 2015, 15, 182-188.	0.3	0
54	Expression of cell adhesion molecules in laryngeal carcinoma – preliminary analysis. Wspolczesna Onkologia, 2014, 6, 403-408.	0.7	0

#	Article	IF	CITATIONS
55	Cathelicidin rCRAMP stimulates rat mast cells to generate cysteinyl leukotrienes, synthesize TNF and migrate: involvement of PLC/A2, PI3K and MAPK signaling pathways. International Immunology, 2014, 26, 637-646.	1.8	18
56	Mast cells generate cysteinyl leukotrienes and interferon-beta as well as evince impaired IgE-dependent degranulation upon TLR7 engagement. Indian Journal of Experimental Biology, 2014, 52, 589-96.	0.5	5
57	Experimental immunology FcεRI-mediated mast cell response is modulated by TLR2 and TLR4 ligation. Central-European Journal of Immunology, 2013, 1, 23-28.	0.4	0
58	Stem cell factor-dependent mast cell proliferation, maturation and activity can be regulated by inhibitory receptors. Central-European Journal of Immunology, 2013, 1, 134-140.	0.4	0
59	Toll-like receptors 3 ligation directly and indirectly affects mast cell cysteinyl leukotriene generation. Central-European Journal of Immunology, 2013, 3, 343-348.	0.4	0
60	IgE by Itself Affects Mature Rat Mast Cell Preformed and De Novo-Synthesized Mediator Release and Amplifies Mast Cell Migratory Response. PLoS ONE, 2013, 8, e79286.	1.1	9
61	Are mast cells the Trojan horse in HIV-1 infection?. Central-European Journal of Immunology, 2012, 4, 382-386.	0.4	Ο
62	Effect of scaling and root planing on interleukinâ€1β, interleukinâ€8 and MMPâ€8 levels in gingival crevicular fluid from chronic periodontitis patients. Journal of Periodontal Research, 2012, 47, 681-688.	1.4	68
63	Different potency of bacterial antigens TLR2 and TLR4 ligands in stimulating mature mast cells to cysteinyl leukotriene synthesis. Microbiology and Immunology, 2012, 56, 183-190.	0.7	8
64	Surface TLR2 and TLR4 Expression on Mature Rat Mast Cells Can Be Affected by Some Bacterial Components and Proinflammatory Cytokines. Mediators of Inflammation, 2011, 2011, 1-11.	1.4	41
65	Lipopolysaccharide from Porphyromonas Gingivalis Stimulates Rat Mast Cells to Cysteinyl Leukotriene Generation and Upregulates Toll-like Receptor â^'2 and â^'4 Expression. International Journal of Immunopathology and Pharmacology, 2010, 23, 803-810.	1.0	18
66	Mast Cells as a Source and Target for Histamine. , 2010, , 247-284.		0
67	Diverse effects of bacterial cell wall components on mast cell degranulation, cysteinyl leukotriene generation and migration. Microbiology and Immunology, 2009, 53, 694-703.	0.7	28
68	ILâ€6, but not ILâ€4, stimulates chemokinesis and TNF stimulates chemotaxis of tissue mast cells: involvement of both mitogenâ€activated protein kinases and phosphatidylinositol 3â€kinase signalling pathways. Apmis, 2009, 117, 558-567.	0.9	21
69	Interleukin (IL)-10 inhibits RANTES-, tumour necrosis factor (TNF)- and nerve growth factor (NGF)-induced mast cell migratory response but is not a mast cell chemoattractant. Immunology Letters, 2009, 123, 46-51.	1.1	16
70	Tumor Necrosis Factor (TNF) Is a Potent Rat Mast Cell Chemoattractant. Journal of Interferon and Cytokine Research, 2007, 27, 911-920.	0.5	34
71	Lipoteichoic acids selectively stimulate rat mast cells to cysteinyl leukotriene generation and affect mast cell migration after tumor necrosis factor (TNF)-priming. Immunology Letters, 2007, 109, 138-144.	1.1	17
72	The association between maternal cervicovaginal proinflammatory cytokines concentrations during pregnancy and subsequent early-onset neonatal infection. Journal of Perinatal Medicine, 2006, 34, 371-7.	0.6	12

#	Article	IF	CITATIONS
73	Decreased Proinflammatory Cytokines in Cervicovaginal Fluid, as Measured in Midgestation, are Associated with Preterm Delivery. American Journal of Reproductive Immunology, 2005, 54, 70-76.	1.2	34
74	Action of Tumor Necrosis Factor-alpha on Rat Mast Cells. Journal of Interferon and Cytokine Research, 2000, 20, 377-382.	0.5	12
75	In vitro reactivity of mast cells in urticaria pigmentosa skin. Archives of Dermatological Research, 1998, 290, 14-17.	1.1	11
76	Tumor necrosis factor alpha (TNF-α) modulates rat mast cell reactivity. Immunology Letters, 1998, 64, 167-171.	1.1	13
77	Functional studies of skin mast cells in lichen planus. Archives of Dermatological Research, 1997, 289, 261-264.	1.1	13
78	Tumor necrosis factor α (TNF-α) activates human adenoidal and cutaneous mast cells to histamine secretion. Immunology Letters, 1997, 59, 139-143.	1.1	15
79	Effect of cisplatin and cis-platinum (II) phosphonate complex on murine mast cells. European Journal of Pharmacology, 1996, 298, 155-158.	1.7	20
80	Effects of PBMC-derived histamine-releasing factors on histamine release from human skin and lung mast cells. Clinical and Experimental Allergy, 1995, 25, 890-895.	1.4	11
81	Anaphylactic histamine release from human gastric and duodenal mast cells. Journal of Investigational Allergology and Clinical Immunology, 1994, 4, 242-5.	0.6	0
82	Mast Cells and their Role in Inflammation. , 1993, , 267-295.		0
83	Histamine secretion from human mesenteric and adenoidal mast cells. Archivum Immunologiae Et Therapiae Experimentalis, 1992, 40, 97-102.	1.0	2
84	Histamine release from human adenoidal and mesenteric mast cells induced by bacterial antigens. Agents and Actions, 1988, 23, 230-232.	0.7	4
85	Isolation and sensitivity of human mesenteric mast cells to immunological and nonimmunological histamine releasers. Agents and Actions, 1987, 20, 226-228.	0.7	1
86	Histamine release from mast cells of various species induced by histamine releasing factor from human lymphocytes. Agents and Actions, 1987, 21, 26-31.	0.7	13
87	Histamine-releasing activity of lymphocyte supernatants of guinea pig spleen cell cultures. Immunology Letters, 1986, 13, 289-294.	1.1	1
88	Histamine-releasing properties of mast cells from various strains of mice. Agents and Actions, 1984, 14, 361-364.	0.7	2
89	Kinetics of Specific IgE Antibody and Total IgE Responses in Mice: The Effect of Immunosuppressive Treatment. International Archives of Allergy and Immunology, 1983, 72, 16-21.	0.9	14
90	Anaphylactic histamine release from peritoneal mast cells of two inbred strains of rats sensitized with mouse IgE. Agents and Actions, 1981, 11, 100-102.	0.7	3

#	ARTICLE	IF	CITATIONS
91	Reversed anaphylaxis with anti-IgE on mouse and rat mast cells. Archivum Immunologiae Et Therapiae Experimentalis, 1980, 28, 559-64.	1.0	1
92	Serum Levels and in vitro CX3CL1 (Fractalkine), CXCL8, and IL-10 Synthesis in Phytohemaglutinin-Stimulated and Non-stimulated Peripheral Blood Mononuclear Cells in Subjects With Schizophrenia. Frontiers in Psychiatry, 0, 13, .	1.3	1