Zhiyin Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3097294/publications.pdf Version: 2024-02-01

		331259	329751
52	1,441	21	37
papers	citations	h-index	g-index
52 all docs	52 docs citations	52 times ranked	2180 citing authors

#	Article	IF	CITATIONS
1	Brief survey of diiron and monoiron carbonyl complexes and their potentials as CO-releasing molecules (CORMs). Coordination Chemistry Reviews, 2021, 429, 213634.	9.5	24
2	rr iron(II) carbonyl complexes containing both pyridyl and halide ligands: Their synthesis, racterization, stability, and anticancer activity. Applied Organometallic Chemistry, 2021, 35, .		6
3	The Discrete Breast Cancer Stem Cell Mammosphere Activity of Group 10â€Bis(azadiphosphine) Metal Complexes. Angewandte Chemie - International Edition, 2021, 60, 6704-6709.	7.2	8
4	Beckmann rearrangement of ketoximes promoted by cyanuric chloride and dimethyl sulfoxide under a mild condition. Tetrahedron Letters, 2021, 63, 152707.	0.7	9
5	The Discrete Breast Cancer Stem Cell Mammosphere Activity of Group 10â€Bis(azadiphosphine) Metal Complexes. Angewandte Chemie, 2021, 133, 6778-6783.	1.6	2
6	One high-nuclearity Eu ₁₈ nanoring with rapid ratiometric fluorescence response to dipicolinic acid (an anthrax biomarker). Chemical Communications, 2021, 57, 7316-7319.	2.2	8
7	The superiority of cuprous chloride to iodide in the selective aerobic oxidation of benzylic alcohols at ambient temperature. Applied Organometallic Chemistry, 2021, 35, e6245.	1.7	7
8	Further exploration of the reaction between cis â€[Fe(CO) 4 I 2] and alkylamines: An aminium salt of fac â€[Fe(CO) 3 I 3] â^' or an amineâ€bound complex of fac â€[Fe(CO) 3 I 2 (NH 2 R)]?. Applied Organometallic Chemistry, 2021, 35, e6280.	1.7	3
9	Osteosarcoma Stem Cell Potent Gallium(III)â€Polypyridyl Complexes Bearing Diflunisal. Chemistry - A European Journal, 2021, 27, 13846-13854.	1.7	8
10	Revealing the Intrinsic Nature of the Synergistic Effect Caused by the Formation of Heterojunctions in Cu–Cu ₂ 0/rGO-NH ₂ Nanomaterials in the Catalysis of Selective Aerobic Oxidation of Benzyl Alcohol. Inorganic Chemistry, 2021, 60, 14540-14543.	1.9	10
11	Recent developments in electrochemical investigations into iron carbonyl complexes relevant to the iron centres of hydrogenases. Dalton Transactions, 2021, 51, 40-47.	1.6	15
12	A 42-metal Yb(<scp>iii</scp>) nanowheel with NIR luminescent response to anions. Nanoscale, 2020, 12, 1384-1388.	2.8	29
13	The Bulk Osteosarcoma and Osteosarcoma Stem Cell Activity of a Necroptosisâ€inducing Nickel(II)–Phenanthroline Complex. ChemBioChem, 2020, 21, 2854-2860.	1.3	12
14	Breast Cancer Stem Cell Potency of Nickel(II)â€Polypyridyl Complexes Containing Nonâ€steroidal Antiâ€inflammatory Drugs. Chemistry - A European Journal, 2020, 26, 14011-14017.	1.7	10
15	The monoiron anionfac-[Fe(CO)3I3]â^'and its organic aminium salts: their preparation, CO-release, and cytotoxicity. New Journal of Chemistry, 2020, 44, 10300-10308.	1.4	4
16	Probing into the electrochemistry of four nickel(II) and cobalt(II) complexes with azadiphosphine ligands (PNP) and their catalysis on proton reduction. Electrochimica Acta, 2020, 340, 135998.	2.6	15
17	Diiron(<scp>ii</scp>) pentacarbonyl complexes as CO-releasing molecules: their synthesis, characterization, CO-releasing behaviour and biocompatibility. Dalton Transactions, 2019, 48, 468-477.	1.6	14
	Crystal structure of 4-(5.5-difluoro-1.3.7.9-tetramethyl-3 cixHc/ix.5 cixHc/ix.5 îx cux $4/sux$ -dipyrrolo[1.2-chxcz/hx.23€2.13€2-ci	\f_li\][1 3	21diazaborir

4-(5,5-difluoro-1,3,7,9-tetramethyl-3<i>H</i>,5<i>H</i>,5<i>Sup>4</sup>-dipyrrolo[1,2-c:2′,1′-<i>f</i>][1,3,2]diazaborini tetraiodidoferrate(III), C₁₈H₁₉BF₂Fel₄N₃. Zeitschrift Fur Kristallographie - New Crystal Structures, 2019, 234, 1015-1016.

ΖΗΙΥΙΝ ΧΙΑΟ

#	Article	IF	CITATIONS
19	Degradable rhenium trioxide nanocubes with high localized surface plasmon resonance absorbance like gold for photothermal theranostics. Biomaterials, 2018, 159, 68-81.	5.7	52
20	Enhancement in catalytic proton reduction by an internal base in a diiron pentacarbonyl complex: its synthesis, characterisation, inter-conversion and electrochemical investigation. Dalton Transactions, 2017, 46, 1864-1871.	1.6	15
21	CuCo ₂ S ₄ nanocrystals: a new platform for multimodal imaging guided photothermal therapy. Nanoscale, 2017, 9, 2626-2632.	2.8	47
22	Facile synthesis of maguey-like CuCo2O4 nanowires with high areal capacitance for supercapacitors. Journal of Alloys and Compounds, 2017, 695, 3503-3510.	2.8	72
23	Core–shell materials bearing iron(<scp>ii</scp>) carbonyl units and their CO-release via an upconversion process. Journal of Materials Chemistry B, 2017, 5, 8161-8168.	2.9	31
24	Reaction of three cyclic thioester ligands with triiron dodecacarbonyl and possible reaction mechanisms. Journal of Chemical Sciences, 2017, 129, 1595-1601.	0.7	4
25	The influence of a peripheral functional group of diiron hexacarbonyl complexes on their electrochemistry and electrocatalytic reduction of proton. Electrochimica Acta, 2017, 247, 779-786.	2.6	18
26	Polypyrrole-encapsulated iron tungstate nanocomposites: a versatile platform for multimodal tumor imaging and photothermal therapy. Nanoscale, 2016, 8, 12917-12928.	2.8	34
27	Hydrophilic bismuth sulfur nanoflower superstructures with an improved photothermal efficiency for ablation of cancer cells. Nano Research, 2016, 9, 1934-1947.	5.8	80
28	Synthesis of WS ₂ Nanowires Efficient 808 nm-Laser-Driven Photothermal Nanoagents. Journal of Nanoscience and Nanotechnology, 2016, 16, 5865-5868.	0.9	9
29	NaYF ₄ :Yb/Er@PPy core–shell nanoplates: an imaging-guided multimodal platform for photothermal therapy of cancers. Nanoscale, 2016, 8, 1040-1048.	2.8	42
30	SnS nanosheets for efficient photothermal therapy. New Journal of Chemistry, 2016, 40, 4464-4467.	1.4	27
31	Photoinduced Carbon Monoxide Release from Halfâ€6andwich Iron(II) Carbonyl Complexes by Visible Irradiation: Kinetic Analysis and Mechanistic Investigation. Chemistry - A European Journal, 2015, 21, 13065-13072.	1.7	30
32	Hydrous RuO ₂ nanoparticles as an efficient NIR-light induced photothermal agent for ablation of cancer cells in vitro and in vivo. Nanoscale, 2015, 7, 11962-11970.	2.8	44
33	Photothermal Theragnosis Synergistic Therapy Based on Bimetal Sulphide Nanocrystals Rather Than Nanocomposites. Advanced Materials, 2015, 27, 1339-1345.	11.1	149
34	Simultaneous control of morphology, phase and optical absorption of hydrophilic copper sulfide-based photothermal nanoagents through Cu/S precursor ratios. Journal of Alloys and Compounds, 2015, 648, 98-103.	2.8	15
35	CuS@mSiO ₂ -PEG core–shell nanoparticles as a NIR light responsive drug delivery nanoplatform for efficient chemo-photothermal therapy. Dalton Transactions, 2015, 44, 10343-10351.	1.6	80
36	Na _{0.3} WO ₃ nanorods: a multifunctional agent for in vivo dual-model imaging and photothermal therapy of cancer cells. Dalton Transactions, 2015, 44, 2771-2779.	1.6	27

ΖΗΙΥΙΝ ΧΙΑΟ

#	Article	IF	CITATIONS
37	Introducing polyethyleneimine (PEI) into the electrospun fibrous membranes containing diiron mimics of [FeFe]-hydrogenase: Membrane electrodes and their electrocatalysis on proton reduction in aqueous media. International Journal of Hydrogen Energy, 2015, 40, 5081-5091.	3.8	19
38	Heterostructures of CuS nanoparticle/ZnO nanorod arrays on carbon fibers with improved visible and solar light photocatalytic properties. Journal of Materials Chemistry A, 2015, 3, 7304-7313.	5.2	95
39	Diiron hexacarbonyl complexes bearing naphthalene-1,8-dithiolate bridge moiety as mimics of the sub-unit of [FeFe]-hydrogenase: synthesis, characterisation and electrochemical investigations. New Journal of Chemistry, 2015, 39, 9752-9760.	1.4	40
40	Folic acid-conjugated hollow mesoporous silica/CuS nanocomposites as a difunctional nanoplatform for targeted chemo-photothermal therapy of cancer cells. Journal of Materials Chemistry B, 2014, 2, 5358.	2.9	88
41	A Novel Photothermal Nanocrystals of Cu7S4 Hollow Structure for Efficient Ablation of Cancer Cells. Nano-Micro Letters, 2014, 6, 169-177.	14.4	33
42	Water-soluble diiron hexacarbonyl complex as a CO-RM: controllable CO-releasing, releasing mechanism and biocompatibility. Dalton Transactions, 2013, 42, 15663.	1.6	31
43	Using polyethyleneimine (PEI) as a scaffold to construct mimicking systems of [FeFe]â€hydrogenase: preparation, characterization of PEIâ€based materials, and their catalysis on proton reduction. Applied Organometallic Chemistry, 2013, 27, 253-260.	1.7	12
44	[FeFe]-hydrogenase-inspired membrane electrode and its catalytic evolution of hydrogen in water. RSC Advances, 2012, 2, 10171.	1.7	15
45	The reactions of pyridinyl thioesters with triiron dodecacarbonyl: their novel diiron carbonyl complexes and mechanistic investigations. Dalton Transactions, 2012, 41, 9482.	1.6	8
46	Enable PVC plastic for a novel role: its functionalisation with diiron models of the sub-unit of [FeFe]–hydrogenase, assembly of film electrodes, and electrochemical investigations. RSC Advances, 2011, 1, 1211.	1.7	18
47	Diiron carbonyl complexes possessing a {Fe(ii)Fe(ii)} core: synthesis, characterisation, and electrochemical investigation. Dalton Transactions, 2011, 40, 4291.	1.6	29
48	Influence of the basicity of internal bases in diiron model complexes on hydrides formation and their transformation into protonated diiron hexacarbonyl form. Journal of Organometallic Chemistry, 2010, 695, 721-729.	0.8	22
49	Synthesis and characterisation of anthracene-based fluorophore and its interactions with selected metal ions. Inorganica Chimica Acta, 2010, 363, 2325-2332.	1.2	7
50	Using pendant ferrocenyl group(s) as an intramolecular standard to probe the reduction of diiron hexacarbonyl model complexes for the sub-unit of [FeFe]-hydrogenase. Electrochemistry Communications, 2010, 12, 342-345.	2.3	47
51	A rare bond between a soft metal (FeI) and a relatively hard base (ROâ^', R = phenolic moiety). Inorganic Chemistry Communication, 2010, 13, 1089-1092.	1.8	16
52	Iron(0) tricarbonyl η ⁴ -1-azadiene complexes and their catalytic performance in the hydroboration of ketones, aldehydes and aldimines <i>via</i> a non-iron hydride pathway. Dalton Transactions, 0, , .	1.6	1