Zezhou Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3097014/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The comprehensive utilization of the synergistic effect of fullerene and non-fullerene acceptors to achieve highly efficient polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 15841-15850.	10.3	118
2	Enhanced efficiency of polymer solar cells through synergistic optimization of mobility and tuning donor alloys by adding high-mobility conjugated polymers. Journal of Materials Chemistry C, 2018, 6, 11015-11022.	5.5	87
3	Self-doping n-type polymer as a cathode interface layer enables efficient organic solar cells by increasing built-in electric field and boosting interface contact. Journal of Materials Chemistry C, 2019, 7, 11152-11159.	5.5	87
4	Enhanced Organic Photovoltaic Performance through Modulating Vertical Composition Distribution and Promoting Crystallinity of the Photoactive Layer by Diphenyl Sulfide Additives. ACS Applied Materials & Interfaces, 2019, 11, 7022-7029.	8.0	79
5	Insights into Excitonic Dynamics of Terpolymer-Based High-Efficiency Nonfullerene Polymer Solar Cells: Enhancing the Yield of Charge Separation States. ACS Applied Materials & Interfaces, 2020, 12, 8475-8484.	8.0	62
6	Employing structurally similar acceptors as crystalline modulators to construct high efficiency ternary organic solar cells. Journal of Materials Chemistry A, 2019, 7, 7760-7765.	10.3	60
7	Non-toxic green food additive enables efficient polymer solar cells through adjusting the phase composition distribution and boosting charge transport. Journal of Materials Chemistry C, 2020, 8, 2483-2490.	5.5	51
8	Efficient inverted organic solar cells with a thin natural biomaterial l-Arginine as electron transport layer. Solar Energy, 2020, 196, 168-176.	6.1	51
9	Non-Halogenated Polymer Donor-Based Organic Solar Cells with a Nearly 15% Efficiency Enabled by a Classic Ternary Strategy. ACS Applied Energy Materials, 2021, 4, 1774-1783.	5.1	47
10	Two Compatible Acceptors as an Alloy Model with a Halogen-Free Solvent for Efficient Ternary Polymer Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 9386-9397.	8.0	46
11	Benzo[1,2â€b:4,5â€b′]difuran Based Polymer Donor for Highâ€Efficiency (>16%) and Stable Organic Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	37
12	An Alcohol-Soluble Polymer Electron Transport Layer Based on Perylene Diimide Derivatives for Polymer Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1678-1685.	2.5	34
13	Fluorinated D1 _(0.5) –A–D2 _(0.5) –A model terpolymer: ultrafast charge separation kinetics and electron transfer at the fluorinated D/A interface for power conversion. Journal of Materials Chemistry A, 2020, 8, 1360-1367.	10.3	31
14	Rational Design and Characterization of Symmetry-Breaking Organic Semiconductors in Polymer Solar Cells: A Theory Insight of the Asymmetric Advantage. Materials, 2021, 14, 6723.	2.9	21
15	Ultrafast Kinetics of Chlorinated Polymer Donors: A Faster Excitonic Dissociation Path. ACS Applied Materials & Interfaces, 2022, 14, 6945-6957.	8.0	18
16	Ultrafast Kinetics Investigation of a Fluorinated-Benzothiadiazole Polymer with an Increased Excited State Transition Dipole Moment Applied in Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 9627-9638.	5.1	14
17	Aggregation Tuning with Heavily Fluorinated Donor Polymer for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 49849-49856.	8.0	10
18	Elevated Photovoltaic Performance in Medium Bandgap Copolymers Composed of Indacenodi-thieno[3,2-b]thiophene and Benzothiadiazole Subunits by Modulating the π-Bridge. Polymers, 2020, 12, 368	4.5	10

ZEZHOU LIANG

#	Article	IF	CITATIONS
19	36% Enhanced Efficiency of Ternary Organic Solar Cells by Doping a NT-Based Polymer as an Electron-Cascade Donor. Polymers, 2018, 10, 703.	4.5	9
20	Solution-processible Cd-doped ZnO nanoparticles as an electron transport layer to achieve high performance polymer solar cells through improve conductivity and light transmittance. Molecular Crystals and Liquid Crystals, 2019, 692, 74-82.	0.9	9
21	Fluorination Effect for Highly Conjugated Alternating Copolymers Involving Thienylenevinylene-Thiophene-Flanked Benzodithiophene and Benzothiadiazole Subunits in Photovoltaic Application. Polymers, 2020, 12, 504.	4.5	7
22	Impact of fluorination on photovoltaic performance in high thermo- and photo-stability perylene diimide-based nonfullerene small molecular acceptors. Optical Materials, 2021, 121, 111593.	3.6	7
23	Achieving Efficient Polymer Solar Cells Based on Near-Infrared Absorptive Backbone Twisted Nonfullerene Acceptors through a Synergistic Strategy of an Indacenodiselenophene Fused-Ring Core and a Chlorinated Terminal Group. ACS Applied Energy Materials, 2022, 5, 1322-1330.	5.1	6
24	Nonlinear optical limiting property and carrier dynamics in tin phthalocyanine porous organic frameworks. Journal of Chemical Physics, 2022, 156, 054702.	3.0	5
25	Fluorination effect of benzo[c][1,2,5]thiadiazole-alt-oligothiophene-based copolymers involving all straight flexible side chain in photovoltaic application. Optical Materials, 2020, 108, 110321.	3.6	4
26	Synthesis and Photovoltaic Effect of Electron-Withdrawing Units for Low Band Gap Conjugated Polymers Bearing Bi(thienylenevinylene) Side Chains. Polymers, 2019, 11, 1461.	4.5	3
27	Synthesis and photovoltaic investigation of dithieno[2,3â€ <i>d</i> :2′,3′â€ <i>d</i> ′]â€benzo[1,2â€ <i>b</i> :3,4â€ <i>b</i> ′:5,6â€ <i>d</i> ″]tr polymer with an enlarged Ï€â€conjugated system. Polymers for Advanced Technologies, 2019, 30, 1290-1302	ithiophene	a€based coi