Juan M Paz-Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3096652/publications.pdf

Version: 2024-02-01

361413 454955 39 924 20 30 citations h-index g-index papers 41 41 41 1055 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Acid leaching of LiCoO2 enhanced by reducing agent. Model formulation and validation. Chemosphere, 2022, 287, 132020.	8.2	14
2	NEW TRENDS IN ACADEMIC ASSIGNMENTS: LESS PAPER AND MORE CLOUD. INTED Proceedings, 2022, , .	0.0	O
3	BOARDGAMES AS LEARNING ACTIVITIES IN STEM DEGREES. INTED Proceedings, 2022, , .	0.0	O
4	Comparison of different extracting agents for the recovery of Pb and Zn through electrokinetic remediation of mine tailings. Journal of Environmental Management, 2021, 279, 111728.	7.8	30
5	Hydrometallurgical Extraction of Li and Co from LiCoO2 Particles–Experimental and Modeling. Applied Sciences (Switzerland), 2020, 10, 6375.	2.5	11
6	Chemical Reduction of Nitrate by Zero-Valent Iron: Shrinking-Core versus Surface Kinetics Models. International Journal of Environmental Research and Public Health, 2020, 17, 1241.	2.6	6
7	Emerging organic contaminants in wastewater: Understanding electrochemical reactors for triclosan and its by-products degradation. Chemosphere, 2020, 247, 125758.	8.2	37
8	Recovery of Li and Co from LiCoO2 via Hydrometallurgical–Electrodialytic Treatment. Applied Sciences (Switzerland), 2020, 10, 2367.	2.5	26
9	SEQUENTIAL EXTRACTION PROCEDURE: A VERSATILE TOOL FOR ENVIRONMENTAL RESEARCH. Detritus, 2020, , 23-28.	0.9	O
10	Electrokinetic Remediation Procedure Applied to Polluted Soils in Southern Spain. Journal of Hazardous, Toxic, and Radioactive Waste, 2019, 23, 04019017.	2.0	1
11	Exploring hydrogen production for self-energy generation in electroremediation: A proof of concept. Applied Energy, 2019, 255, 113839.	10.1	14
12	Electrodialytic processes in solid matrices. New insights into battery recycling. A review. Journal of Chemical Technology and Biotechnology, 2019, 94, 1727-1738.	3.2	11
13	Modeling of electrokinetic remediation combining local chemical equilibrium and chemical reaction kinetics. Journal of Hazardous Materials, 2019, 371, 728-733.	12.4	16
14	Electronic Tongue Coupled to an Electrochemical Flow Reactor for Emerging Organic Contaminants Real Time Monitoring. Sensors, 2019, 19, 5349.	3.8	14
15	Modeling of electrokinetic remediation of Cd- and Pb-contaminated kaolinite. Journal of Hazardous Materials, 2019, 366, 630-635.	12.4	35
16	Sustainability of construction materials: Electrodialytic technology as a tool for mortars production. Journal of Hazardous Materials, 2019, 363, 421-427.	12.4	10
17	Specific Energy Requirements in Electrokinetic Remediation. Transport in Porous Media, 2018, 121, 585-595.	2.6	9
18	Aging effects on the mobility of Pb in soil: Influence on the energy requirements in electroremediation. Chemosphere, 2018, 213, 351-357.	8.2	15

#	Article	IF	Citations
19	Microstructural degradation of silicon electrodes during lithiation observed via operando X-ray tomographic imaging. Journal of Power Sources, 2017, 342, 904-912.	7.8	54
20	Investigating the evolving microstructure of lithium metal electrodes in 3D using X-ray computed tomography. Physical Chemistry Chemical Physics, 2017, 19, 22111-22120.	2.8	47
21	4D analysis of the microstructural evolution of Si-based electrodes during lithiation: Time-lapse X-ray imaging and digital volume correlation. Journal of Power Sources, 2016, 320, 196-203.	7.8	53
22	A Coupled Reactive-Transport Model for Electrokinetic Remediation., 2016,, 251-278.		3
23	Feasibility Study of the Electrokinetic Remediation of a Mercury-Polluted Soil., 2016,, 295-310.		1
24	The use of ethylenediaminetetraacetic acid as enhancing agent for the remediation of a lead polluted soil. Electrochimica Acta, 2015, 181, 82-89.	5.2	23
25	Electrochemical desalination of bricks – Experimental and modeling. Electrochimica Acta, 2015, 181, 24-30.	5.2	12
26	Scaling-up the acid-enhanced electrokinetic remediation of a real contaminated soil. Electrochimica Acta, 2015, 181, 139-145.	5.2	33
27	Effects of the buffering capacity of the soil on the mobilization of heavy metals. Equilibrium and kinetics. Chemosphere, 2015, 131, 78-84.	8.2	32
28	Energy from CO2 using capacitive electrodes $\hat{a} \in A$ model for energy extraction cycles. Journal of Colloid and Interface Science, 2015, 442, 103-109.	9.4	29
29	Energy from CO2 using capacitive electrodes – Theoretical outline and calculation of open circuit voltage. Journal of Colloid and Interface Science, 2014, 418, 200-207.	9.4	32
30	Harvesting Energy from CO ₂ Emissions. Environmental Science and Technology Letters, 2014, 1, 31-35.	8.7	61
31	Modeling of Electric Double-Layers Including Chemical Reaction Effects. Electrochimica Acta, 2014, 150, 263-268.	5. 2	22
32	Acid Enhanced Electrokinetic Remediation of a Contaminated Soil using Constant Current Density: Strong vs. Weak Acid. Separation Science and Technology, 2014, 49, 1461-1468.	2.5	30
33	Computing multi-species chemical equilibrium with an algorithm based on the reaction extents. Computers and Chemical Engineering, 2013, 58, 135-143.	3.8	32
34	Simulation-based analysis of the differences in the removal rate of chlorides, nitrates and sulfates by electrokinetic desalination treatments. Electrochimica Acta, 2013, 89, 436-444.	5.2	40
35	A generalized model for transport of contaminants in soil by electric fields. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 308-318.	1.7	36
36	Modeling of electrokinetic desalination of bricks. Electrochimica Acta, 2012, 86, 213-222.	5. 2	34

#	Article	IF	CITATIONS
37	Modeling of electrokinetic processes by finite element integration of the Nernst–Planck–Poisson system of equations. Separation and Purification Technology, 2011, 79, 183-192.	7.9	47
38	Feasibility study of the use of different extractant agents in the remediation of a mercury contaminated soil from Almaden. Separation and Purification Technology, 2011, 79, 151-156.	7.9	52
39	Modelling of Electrokinetic Processes in Civil and Environmental Engineering Applications. , 0, , .		1